Spaces:
Runtime error
Runtime error
dhkim2810
commited on
Commit
•
cabd05c
1
Parent(s):
6cf5a6c
Add debug print
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import numpy as np
|
|
5 |
import torch
|
6 |
from mobile_sam import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry
|
7 |
from PIL import ImageDraw
|
|
|
8 |
from utils.tools import box_prompt, format_results, point_prompt
|
9 |
from utils.tools_gradio import fast_process
|
10 |
|
@@ -111,6 +112,8 @@ def segment_with_points(
|
|
111 |
global global_points
|
112 |
global global_point_label
|
113 |
|
|
|
|
|
114 |
input_size = int(input_size)
|
115 |
w, h = image.size
|
116 |
scale = input_size / max(w, h)
|
@@ -118,18 +121,21 @@ def segment_with_points(
|
|
118 |
new_h = int(h * scale)
|
119 |
image = image.resize((new_w, new_h))
|
120 |
|
|
|
|
|
|
|
121 |
scaled_points = np.array(
|
122 |
[[int(x * scale) for x in point] for point in global_points]
|
123 |
)
|
124 |
scaled_point_label = np.array(global_point_label)
|
125 |
|
|
|
|
|
|
|
126 |
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
127 |
print("No points selected")
|
128 |
return image, image
|
129 |
|
130 |
-
print(scaled_points, scaled_points is not None)
|
131 |
-
print(scaled_point_label, scaled_point_label is not None)
|
132 |
-
|
133 |
nd_image = np.array(image)
|
134 |
predictor.set_image(nd_image)
|
135 |
masks, scores, logits = predictor.predict(
|
|
|
5 |
import torch
|
6 |
from mobile_sam import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry
|
7 |
from PIL import ImageDraw
|
8 |
+
|
9 |
from utils.tools import box_prompt, format_results, point_prompt
|
10 |
from utils.tools_gradio import fast_process
|
11 |
|
|
|
112 |
global global_points
|
113 |
global global_point_label
|
114 |
|
115 |
+
print("Original Image : ", image.size)
|
116 |
+
|
117 |
input_size = int(input_size)
|
118 |
w, h = image.size
|
119 |
scale = input_size / max(w, h)
|
|
|
121 |
new_h = int(h * scale)
|
122 |
image = image.resize((new_w, new_h))
|
123 |
|
124 |
+
print("Scaled Image : ", image.size)
|
125 |
+
print("Scale : ", scale)
|
126 |
+
|
127 |
scaled_points = np.array(
|
128 |
[[int(x * scale) for x in point] for point in global_points]
|
129 |
)
|
130 |
scaled_point_label = np.array(global_point_label)
|
131 |
|
132 |
+
print(scaled_points, scaled_points is not None)
|
133 |
+
print(scaled_point_label, scaled_point_label is not None)
|
134 |
+
|
135 |
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
136 |
print("No points selected")
|
137 |
return image, image
|
138 |
|
|
|
|
|
|
|
139 |
nd_image = np.array(image)
|
140 |
predictor.set_image(nd_image)
|
141 |
masks, scores, logits = predictor.predict(
|