Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import fitz # PyMuPDF
|
6 |
+
import requests
|
7 |
+
from transformers import pipeline
|
8 |
+
from gtts import gTTS
|
9 |
+
import streamlit as st
|
10 |
+
|
11 |
+
# ---------- CONFIG ----------
|
12 |
+
def summarize_text(text: str) -> str:
|
13 |
+
if not text.strip():
|
14 |
+
return "Summary not available (empty text)."
|
15 |
+
|
16 |
+
try:
|
17 |
+
# Truncate long text safely
|
18 |
+
if len(text) > 2000:
|
19 |
+
text = text[:2000]
|
20 |
+
|
21 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
22 |
+
result = summarizer(text, max_length=200, min_length=30, do_sample=False)
|
23 |
+
|
24 |
+
if result and isinstance(result, list) and 'summary_text' in result[0]:
|
25 |
+
return result[0]['summary_text']
|
26 |
+
return "Summary not available (model did not return text)."
|
27 |
+
except Exception as e:
|
28 |
+
return f"Summary failed: {str(e)}"
|
29 |
+
|
30 |
+
def extract_text_from_pdf(pdf_path: str) -> str:
|
31 |
+
doc = fitz.open(pdf_path)
|
32 |
+
text = ""
|
33 |
+
for page in doc:
|
34 |
+
text += page.get_text()
|
35 |
+
return text
|
36 |
+
|
37 |
+
def classify_topic(text: str, topics: List[str]) -> str:
|
38 |
+
if not text.strip():
|
39 |
+
return "Unknown (no text extracted)"
|
40 |
+
if not topics:
|
41 |
+
return "Unknown (no topics provided)"
|
42 |
+
|
43 |
+
classifier = pipeline("zero-shot-classification", model="valhalla/distilbart-mnli-12-3")
|
44 |
+
result = classifier(text[:1000], candidate_labels=topics)
|
45 |
+
|
46 |
+
if 'labels' in result and isinstance(result['labels'], list) and len(result['labels']) > 0:
|
47 |
+
return result['labels'][0]
|
48 |
+
return "Unknown (classification failed)"
|
49 |
+
|
50 |
+
def generate_audio(text: str, output_path: str):
|
51 |
+
try:
|
52 |
+
tts = gTTS(text)
|
53 |
+
tts.save(output_path)
|
54 |
+
except Exception as e:
|
55 |
+
raise RuntimeError(f"Audio generation failed: {str(e)}")
|
56 |
+
|
57 |
+
# ---------- STREAMLIT UI ----------
|
58 |
+
st.set_page_config(page_title="Research Paper Summarizer", layout="centered")
|
59 |
+
st.title("π AI Research Paper Summarizer")
|
60 |
+
|
61 |
+
st.markdown("""
|
62 |
+
Upload a research paper (PDF) and a list of topics. The app will:
|
63 |
+
1. Extract and summarize the paper
|
64 |
+
2. Classify it into a topic
|
65 |
+
3. Generate an audio summary π§
|
66 |
+
""")
|
67 |
+
|
68 |
+
with st.form("upload_form"):
|
69 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
70 |
+
topic_input = st.text_input("Enter comma-separated topics")
|
71 |
+
submitted = st.form_submit_button("Summarize and Generate Audio")
|
72 |
+
|
73 |
+
if submitted and uploaded_file and topic_input:
|
74 |
+
with st.spinner("Processing paper..."):
|
75 |
+
try:
|
76 |
+
temp_dir = tempfile.mkdtemp()
|
77 |
+
file_path = os.path.join(temp_dir, uploaded_file.name)
|
78 |
+
|
79 |
+
with open(file_path, "wb") as f:
|
80 |
+
f.write(uploaded_file.read())
|
81 |
+
|
82 |
+
text = extract_text_from_pdf(file_path)
|
83 |
+
st.info(f"Extracted text length: {len(text)} characters")
|
84 |
+
|
85 |
+
if not text.strip():
|
86 |
+
st.error("β No text could be extracted from the PDF. Try another file.")
|
87 |
+
else:
|
88 |
+
topic_list = [t.strip() for t in topic_input.split(",") if t.strip()]
|
89 |
+
classified_topic = classify_topic(text, topic_list)
|
90 |
+
summary = summarize_text(text)
|
91 |
+
|
92 |
+
st.markdown(f"### π§ Classified Topic: `{classified_topic}`")
|
93 |
+
st.markdown("### βοΈ Summary:")
|
94 |
+
st.write(summary)
|
95 |
+
|
96 |
+
audio_path = os.path.join(temp_dir, "summary.mp3")
|
97 |
+
generate_audio(summary, audio_path)
|
98 |
+
|
99 |
+
st.markdown("### π Audio Summary")
|
100 |
+
st.audio(audio_path)
|
101 |
+
st.success("Done! Audio summary is ready.")
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
st.error(f"β Error: {str(e)}")
|