Spaces:
Sleeping
Sleeping
Commit
·
07bd23e
1
Parent(s):
91d5d59
Added Local code for Invitation Generator
Browse files- LLM_handler.py +51 -0
- __pycache__/LLM_handler.cpython-311.pyc +0 -0
- __pycache__/llm_merger.cpython-311.pyc +0 -0
- __pycache__/openai_llms.cpython-311.pyc +0 -0
- __pycache__/query_handler.cpython-311.pyc +0 -0
- llm_merger.py +86 -0
- main.py +56 -0
- openai_llms.py +2 -2
- query_handler.py +80 -0
LLM_handler.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from langchain_community.chat_models import ChatOpenAI
|
| 3 |
+
from langchain_groq import ChatGroq
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
|
| 6 |
+
load_dotenv()
|
| 7 |
+
|
| 8 |
+
class LLMHandler:
|
| 9 |
+
def __init__(self, model_name="gpt-4", provider="openai"):
|
| 10 |
+
self.provider = provider
|
| 11 |
+
|
| 12 |
+
if provider == "openai":
|
| 13 |
+
self.api_key = os.getenv("OPENAI_API_KEY")
|
| 14 |
+
if not self.api_key:
|
| 15 |
+
raise ValueError("OPENAI_API_KEY environment variable not set.")
|
| 16 |
+
self.model = ChatOpenAI(api_key=self.api_key, model=model_name)
|
| 17 |
+
|
| 18 |
+
elif provider == "groq":
|
| 19 |
+
self.api_key = os.getenv("GROQ_API_KEY")
|
| 20 |
+
if not self.api_key:
|
| 21 |
+
raise ValueError("GROQ_API_KEY environment variable not set.")
|
| 22 |
+
self.model = ChatGroq(api_key=self.api_key, model_name=model_name)
|
| 23 |
+
|
| 24 |
+
else:
|
| 25 |
+
raise ValueError("Unsupported provider. Use 'openai' or 'groq'.")
|
| 26 |
+
|
| 27 |
+
def generate_text(self, input_data, user_instruction):
|
| 28 |
+
"""
|
| 29 |
+
Generates personalized text using the LLM.
|
| 30 |
+
"""
|
| 31 |
+
try:
|
| 32 |
+
prompt = self._build_prompt(input_data, user_instruction)
|
| 33 |
+
response = self.model.generate([prompt])
|
| 34 |
+
return response[0]["text"] # Adjust this depending on response format
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Error during text generation: {e}")
|
| 37 |
+
return "Error generating response"
|
| 38 |
+
|
| 39 |
+
@staticmethod
|
| 40 |
+
def _build_prompt(input_data, user_instruction):
|
| 41 |
+
"""
|
| 42 |
+
Builds a structured prompt for the LLM.
|
| 43 |
+
"""
|
| 44 |
+
context = (
|
| 45 |
+
f"Name: {input_data.get('Name')}\n"
|
| 46 |
+
f"Job Title: {input_data.get('Job Title')}\n"
|
| 47 |
+
f"Organization: {input_data.get('Organization', input_data.get('Organisation'))}\n"
|
| 48 |
+
f"Area of Interest: {input_data.get('Area of Interest')}\n"
|
| 49 |
+
f"Category: {input_data.get('Category')}\n"
|
| 50 |
+
)
|
| 51 |
+
return f"{user_instruction}\n\nContext:\n{context}"
|
__pycache__/LLM_handler.cpython-311.pyc
ADDED
|
Binary file (3.26 kB). View file
|
|
|
__pycache__/llm_merger.cpython-311.pyc
ADDED
|
Binary file (4.91 kB). View file
|
|
|
__pycache__/openai_llms.cpython-311.pyc
ADDED
|
Binary file (3.23 kB). View file
|
|
|
__pycache__/query_handler.cpython-311.pyc
ADDED
|
Binary file (4.12 kB). View file
|
|
|
llm_merger.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from langchain_groq import ChatGroq
|
| 4 |
+
from openai import OpenAI
|
| 5 |
+
|
| 6 |
+
load_dotenv()
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class PrimaryLLMHandler:
|
| 10 |
+
def __init__(self, model_name="gpt-4o-mini"):
|
| 11 |
+
"""
|
| 12 |
+
Initializes the Primary LLM Handler (GPT0-mini).
|
| 13 |
+
"""
|
| 14 |
+
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 15 |
+
if not self.openai_api_key:
|
| 16 |
+
raise ValueError("OPENAI_API_KEY environment variable not set.")
|
| 17 |
+
|
| 18 |
+
self.client = OpenAI(api_key=self.openai_api_key)
|
| 19 |
+
self.model_name = model_name
|
| 20 |
+
|
| 21 |
+
def generate_response(self, user_prompt, data):
|
| 22 |
+
"""
|
| 23 |
+
Generates a response using the primary LLM.
|
| 24 |
+
"""
|
| 25 |
+
prompt = (
|
| 26 |
+
f"You are a professional AI model tasked with writing personalized invite texts "
|
| 27 |
+
f"that are concise (less than 40 words), brochure-suitable, and tailored as per the category in the given sample."
|
| 28 |
+
f"\n\n"
|
| 29 |
+
f"User prompt: {user_prompt}\n\n"
|
| 30 |
+
f"Details of the individual:\n"
|
| 31 |
+
f"- Name: {data['Name']}\n"
|
| 32 |
+
f"- Job Title: {data['Job Title']}\n"
|
| 33 |
+
f"- Organisation: {data['Organisation']}\n"
|
| 34 |
+
f"- Area of Interest: {data['Area of Interest']}\n"
|
| 35 |
+
f"- Category: {data['Category']}\n\n"
|
| 36 |
+
f"The response should start with 'Hello {data['Name']}'."
|
| 37 |
+
f"Ensure the tone aligns with the instructions. STRICTLY give only one response."
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
completion = self.client.chat.completions.create(
|
| 41 |
+
model=self.model_name,
|
| 42 |
+
messages=[
|
| 43 |
+
{"role": "system", "content": "You are a professional assistant AI."},
|
| 44 |
+
{"role": "user", "content": prompt},
|
| 45 |
+
],
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
return completion.choices[0].message.content.strip()
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class ValidatorLLMHandler:
|
| 52 |
+
def __init__(self, model_name="gemma2-9b-it"):
|
| 53 |
+
"""
|
| 54 |
+
Initializes the Validator LLM Handler (Llama 3.3 8B).
|
| 55 |
+
"""
|
| 56 |
+
self.groq_api_key = os.getenv("GROQ_API_KEY")
|
| 57 |
+
if not self.groq_api_key:
|
| 58 |
+
raise ValueError("GROQ_API_KEY environment variable not set.")
|
| 59 |
+
|
| 60 |
+
self.llm = ChatGroq(groq_api_key=self.groq_api_key, model_name=model_name)
|
| 61 |
+
|
| 62 |
+
def validate_and_correct_response(self, user_prompt, original_response, data):
|
| 63 |
+
"""
|
| 64 |
+
Validates and corrects the response using the secondary LLM.
|
| 65 |
+
"""
|
| 66 |
+
validation_prompt = (
|
| 67 |
+
f"You are a professional AI model tasked with validating and correcting AI-generated texts. "
|
| 68 |
+
f"The original response must align strictly with the provided user prompt and input details. "
|
| 69 |
+
f"If the response fails to meet the requirements, generate a corrected version."
|
| 70 |
+
f"\n\n"
|
| 71 |
+
f"User prompt: {user_prompt}\n\n"
|
| 72 |
+
f"Details of the individual:\n"
|
| 73 |
+
f"- Name: {data['Name']}\n"
|
| 74 |
+
f"- Job Title: {data['Job Title']}\n"
|
| 75 |
+
f"- Organisation: {data['Organisation']}\n"
|
| 76 |
+
f"- Area of Interest: {data['Area of Interest']}\n"
|
| 77 |
+
f"- Category: {data['Category']}\n\n"
|
| 78 |
+
f"Original response: {original_response}\n\n"
|
| 79 |
+
f"Instructions:\n"
|
| 80 |
+
f"- If the original response aligns with the user prompt and input details, reply with 'Valid Response'.\n"
|
| 81 |
+
f"- Otherwise, provide a corrected version starting with 'Hello {data['Name']}'.\n"
|
| 82 |
+
f"- Keep it concise (less than 40 words) and brochure-suitable.\n"
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
response = self.llm.invoke(validation_prompt)
|
| 86 |
+
return response.content.strip()
|
main.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import csv
|
| 2 |
+
import os
|
| 3 |
+
#from query_handler import LLMHandler
|
| 4 |
+
from openai_llms import LLMHandler
|
| 5 |
+
|
| 6 |
+
def main():
|
| 7 |
+
"""
|
| 8 |
+
Main function to process input CSV, query LLM, and save responses.
|
| 9 |
+
"""
|
| 10 |
+
# Ask user for input CSV file path and user prompt
|
| 11 |
+
#input_csv = input("Enter the path to the input CSV file: ").strip()
|
| 12 |
+
input_csv = "D:\Projects\Liminal\InviteAI\Test_sample.csv"
|
| 13 |
+
if not os.path.exists(input_csv):
|
| 14 |
+
print(f"Error: File '{input_csv}' not found.")
|
| 15 |
+
return
|
| 16 |
+
user_prompt = input("Enter your user prompt: ").strip()
|
| 17 |
+
|
| 18 |
+
# Output CSV file path
|
| 19 |
+
output_csv = "D:\Projects\Liminal\InviteAI\Response_sample.csv"
|
| 20 |
+
|
| 21 |
+
# Check if the input file exists
|
| 22 |
+
if not os.path.exists(input_csv):
|
| 23 |
+
print(f"Error: File '{input_csv}' not found.")
|
| 24 |
+
return
|
| 25 |
+
|
| 26 |
+
# Initialize the LLM handler
|
| 27 |
+
llm_handler = LLMHandler()
|
| 28 |
+
#llm_handler = LLMOpenAI()
|
| 29 |
+
|
| 30 |
+
# Read the input CSV and process each instance
|
| 31 |
+
with open(input_csv, mode="r", newline="", encoding="utf-8") as infile:
|
| 32 |
+
reader = csv.DictReader(infile)
|
| 33 |
+
fieldnames = reader.fieldnames + ["Generated Text"]
|
| 34 |
+
|
| 35 |
+
rows = []
|
| 36 |
+
for row in reader:
|
| 37 |
+
# Generate response for the current row
|
| 38 |
+
try:
|
| 39 |
+
response = llm_handler.generate_response(user_prompt, row)
|
| 40 |
+
row["Generated Text"] = response
|
| 41 |
+
rows.append(row)
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error generating response for UID {row.get('UID')}: {e}")
|
| 44 |
+
row["Generated Text"] = "Error generating response"
|
| 45 |
+
rows.append(row)
|
| 46 |
+
|
| 47 |
+
# Save the updated rows to the output CSV
|
| 48 |
+
with open(output_csv, mode="w", newline="", encoding="utf-8") as outfile:
|
| 49 |
+
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
|
| 50 |
+
writer.writeheader()
|
| 51 |
+
writer.writerows(rows)
|
| 52 |
+
|
| 53 |
+
print(f"Responses saved to '{output_csv}'.")
|
| 54 |
+
|
| 55 |
+
if __name__ == "__main__":
|
| 56 |
+
main()
|
openai_llms.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
from openai import OpenAI
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
|
| 5 |
-
|
| 6 |
|
| 7 |
|
| 8 |
class LLMHandler:
|
|
|
|
| 1 |
from openai import OpenAI
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
import os
|
| 4 |
|
| 5 |
+
load_dotenv()
|
| 6 |
|
| 7 |
|
| 8 |
class LLMHandler:
|
query_handler.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from langchain_groq import ChatGroq
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
|
| 5 |
+
load_dotenv()
|
| 6 |
+
|
| 7 |
+
class LLMHandler:
|
| 8 |
+
def __init__(self, model_name="llama-3.3-70b-versatile"):
|
| 9 |
+
"""
|
| 10 |
+
Initializes the LLMHandler with the specified Groq model.
|
| 11 |
+
"""
|
| 12 |
+
self.groq_api_key = os.getenv("GROQ_API_KEY")
|
| 13 |
+
if not self.groq_api_key:
|
| 14 |
+
raise ValueError("GROQ_API_KEY environment variable not set.")
|
| 15 |
+
|
| 16 |
+
# Initialize Groq LLM client
|
| 17 |
+
self.llm = ChatGroq(groq_api_key=self.groq_api_key, model_name=model_name)
|
| 18 |
+
|
| 19 |
+
def generate_response(self, user_prompt, data):
|
| 20 |
+
"""
|
| 21 |
+
Generate a concise response using the LLM based on user prompt and data.
|
| 22 |
+
"""
|
| 23 |
+
# Create the full prompt using user input and instance data
|
| 24 |
+
prompt = (
|
| 25 |
+
f"You are a professional AI model tasked with writing personalized invite texts "
|
| 26 |
+
f"that are concise (less than 40 words), brochure-suitable, and tailored as per the category in the given sample."
|
| 27 |
+
f"\n\n"
|
| 28 |
+
f"Consider the user prompt: {user_prompt}\n\n"
|
| 29 |
+
f"Details of the individual:\n"
|
| 30 |
+
f"- Name: {data['Name']}\n"
|
| 31 |
+
f"- Job Title: {data['Job Title']}\n"
|
| 32 |
+
f"- Organisation: {data['Organisation']}\n"
|
| 33 |
+
f"- Area of Interest: {data['Area of Interest']}\n"
|
| 34 |
+
f"- Category: {data['Category']}\n\n"
|
| 35 |
+
f"The response can start with 'Hello {data['Name']}'."
|
| 36 |
+
f"Write a personalized invitation text for this individual, ensuring the tone and purpose align with the user's instructions."
|
| 37 |
+
f"STRICTLY give only one response for the category the sample belongs to."
|
| 38 |
+
f"Do NOT mention the category in the response."
|
| 39 |
+
f"NO PREAMBLE."
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Query the LLM and return the response
|
| 43 |
+
response = self.llm.invoke(prompt)
|
| 44 |
+
return response.content.strip()
|
| 45 |
+
|
| 46 |
+
def validate_and_correct_response(self, user_prompt, original_response, data):
|
| 47 |
+
"""
|
| 48 |
+
Use a secondary LLM to validate and correct the response.
|
| 49 |
+
"""
|
| 50 |
+
# Initialize the second LLM (validator)
|
| 51 |
+
validator = ChatGroq(
|
| 52 |
+
groq_api_key=self.groq_api_key,
|
| 53 |
+
model_name="gemma2-9b-it"
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Validation prompt
|
| 57 |
+
validation_prompt = (
|
| 58 |
+
f"You are a professional AI model tasked with validating and correcting AI-generated texts. "
|
| 59 |
+
f"The original response must align strictly with the provided user prompt and input details. "
|
| 60 |
+
f"If the response fails to meet the requirements, generate a corrected response. "
|
| 61 |
+
f"\n\n"
|
| 62 |
+
f"User prompt: {user_prompt}\n\n"
|
| 63 |
+
f"Details of the individual:\n"
|
| 64 |
+
f"- Name: {data['Name']}\n"
|
| 65 |
+
f"- Job Title: {data['Job Title']}\n"
|
| 66 |
+
f"- Organisation: {data['Organisation']}\n"
|
| 67 |
+
f"- Area of Interest: {data['Area of Interest']}\n"
|
| 68 |
+
f"- Category: {data['Category']}\n\n"
|
| 69 |
+
f"Original response: {original_response}\n\n"
|
| 70 |
+
f"Instructions:\n"
|
| 71 |
+
f"- If the original response is correct, reply with 'Valid Response'.\n"
|
| 72 |
+
f"- Otherwise, provide a corrected version."
|
| 73 |
+
f"- The corrected version should start with 'Hello {data['Name']}'."
|
| 74 |
+
f"- The corrected version is concise (less than 40 words), brochure-suitable, and tailored as per the Category"
|
| 75 |
+
f"- NO PREAMBLE "
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Query the validator LLM
|
| 79 |
+
validation_response = validator.invoke(validation_prompt)
|
| 80 |
+
return validation_response.content.strip()
|