dhanilka commited on
Commit
d0a5b8c
β€’
1 Parent(s): 5433187

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +281 -1
app.py CHANGED
@@ -1 +1,281 @@
1
- hell
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from gradio import processing_utils, utils
4
+ from PIL import Image
5
+ import random
6
+ from diffusers import (
7
+ DiffusionPipeline,
8
+ AutoencoderKL,
9
+ StableDiffusionControlNetPipeline,
10
+ ControlNetModel,
11
+ StableDiffusionLatentUpscalePipeline,
12
+ StableDiffusionImg2ImgPipeline,
13
+ StableDiffusionControlNetImg2ImgPipeline,
14
+ DPMSolverMultistepScheduler, # <-- Added import
15
+ EulerDiscreteScheduler # <-- Added import
16
+ )
17
+ import time
18
+ from share_btn import community_icon_html, loading_icon_html, share_js
19
+ import user_history
20
+ from illusion_style import css
21
+
22
+ BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
23
+
24
+ # Initialize both pipelines
25
+ vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
26
+ #init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", torch_dtype=torch.float16)
27
+ controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)#, torch_dtype=torch.float16)
28
+ main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
29
+ BASE_MODEL,
30
+ controlnet=controlnet,
31
+ vae=vae,
32
+ safety_checker=None,
33
+ torch_dtype=torch.float16,
34
+ ).to("cuda")
35
+
36
+ #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
37
+ #main_pipe.unet.to(memory_format=torch.channels_last)
38
+ #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
39
+ #model_id = "stabilityai/sd-x2-latent-upscaler"
40
+ image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
41
+
42
+ #image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
43
+ #upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
44
+ #upscaler.to("cuda")
45
+
46
+
47
+ # Sampler map
48
+ SAMPLER_MAP = {
49
+ "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
50
+ "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
51
+ }
52
+
53
+ def center_crop_resize(img, output_size=(512, 512)):
54
+ width, height = img.size
55
+
56
+ # Calculate dimensions to crop to the center
57
+ new_dimension = min(width, height)
58
+ left = (width - new_dimension)/2
59
+ top = (height - new_dimension)/2
60
+ right = (width + new_dimension)/2
61
+ bottom = (height + new_dimension)/2
62
+
63
+ # Crop and resize
64
+ img = img.crop((left, top, right, bottom))
65
+ img = img.resize(output_size)
66
+
67
+ return img
68
+
69
+ def common_upscale(samples, width, height, upscale_method, crop=False):
70
+ if crop == "center":
71
+ old_width = samples.shape[3]
72
+ old_height = samples.shape[2]
73
+ old_aspect = old_width / old_height
74
+ new_aspect = width / height
75
+ x = 0
76
+ y = 0
77
+ if old_aspect > new_aspect:
78
+ x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
79
+ elif old_aspect < new_aspect:
80
+ y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
81
+ s = samples[:,:,y:old_height-y,x:old_width-x]
82
+ else:
83
+ s = samples
84
+
85
+ return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
86
+
87
+ def upscale(samples, upscale_method, scale_by):
88
+ #s = samples.copy()
89
+ width = round(samples["images"].shape[3] * scale_by)
90
+ height = round(samples["images"].shape[2] * scale_by)
91
+ s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
92
+ return (s)
93
+
94
+ def check_inputs(prompt: str, control_image: Image.Image):
95
+ if control_image is None:
96
+ raise gr.Error("Please select or upload an Input Illusion")
97
+ if prompt is None or prompt == "":
98
+ raise gr.Error("Prompt is required")
99
+
100
+ def convert_to_pil(base64_image):
101
+ pil_image = processing_utils.decode_base64_to_image(base64_image)
102
+ return pil_image
103
+
104
+ def convert_to_base64(pil_image):
105
+ base64_image = processing_utils.encode_pil_to_base64(pil_image)
106
+ return base64_image
107
+
108
+ # Inference function
109
+ def inference(
110
+ control_image: Image.Image,
111
+ prompt: str,
112
+ negative_prompt: str,
113
+ guidance_scale: float = 8.0,
114
+ controlnet_conditioning_scale: float = 1,
115
+ control_guidance_start: float = 1,
116
+ control_guidance_end: float = 1,
117
+ upscaler_strength: float = 0.5,
118
+ seed: int = -1,
119
+ sampler = "DPM++ Karras SDE",
120
+ progress = gr.Progress(track_tqdm=True),
121
+ profile: gr.OAuthProfile | None = None,
122
+ ):
123
+ start_time = time.time()
124
+ start_time_struct = time.localtime(start_time)
125
+ start_time_formatted = time.strftime("%H:%M:%S", start_time_struct)
126
+ print(f"Inference started at {start_time_formatted}")
127
+
128
+ # Generate the initial image
129
+ #init_image = init_pipe(prompt).images[0]
130
+
131
+ # Rest of your existing code
132
+ control_image_small = center_crop_resize(control_image)
133
+ control_image_large = center_crop_resize(control_image, (1024, 1024))
134
+
135
+ main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
136
+ my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
137
+ generator = torch.Generator(device="cuda").manual_seed(my_seed)
138
+
139
+ out = main_pipe(
140
+ prompt=prompt,
141
+ negative_prompt=negative_prompt,
142
+ image=control_image_small,
143
+ guidance_scale=float(guidance_scale),
144
+ controlnet_conditioning_scale=float(controlnet_conditioning_scale),
145
+ generator=generator,
146
+ control_guidance_start=float(control_guidance_start),
147
+ control_guidance_end=float(control_guidance_end),
148
+ num_inference_steps=15,
149
+ output_type="latent"
150
+ )
151
+ upscaled_latents = upscale(out, "nearest-exact", 2)
152
+ out_image = image_pipe(
153
+ prompt=prompt,
154
+ negative_prompt=negative_prompt,
155
+ control_image=control_image_large,
156
+ image=upscaled_latents,
157
+ guidance_scale=float(guidance_scale),
158
+ generator=generator,
159
+ num_inference_steps=20,
160
+ strength=upscaler_strength,
161
+ control_guidance_start=float(control_guidance_start),
162
+ control_guidance_end=float(control_guidance_end),
163
+ controlnet_conditioning_scale=float(controlnet_conditioning_scale)
164
+ )
165
+ end_time = time.time()
166
+ end_time_struct = time.localtime(end_time)
167
+ end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
168
+ print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
169
+
170
+ # Save image + metadata
171
+ user_history.save_image(
172
+ label=prompt,
173
+ image=out_image["images"][0],
174
+ profile=profile,
175
+ metadata={
176
+ "prompt": prompt,
177
+ "negative_prompt": negative_prompt,
178
+ "guidance_scale": guidance_scale,
179
+ "controlnet_conditioning_scale": controlnet_conditioning_scale,
180
+ "control_guidance_start": control_guidance_start,
181
+ "control_guidance_end": control_guidance_end,
182
+ "upscaler_strength": upscaler_strength,
183
+ "seed": seed,
184
+ "sampler": sampler,
185
+ },
186
+ )
187
+
188
+ return out_image["images"][0], gr.update(visible=True), gr.update(visible=True), my_seed
189
+
190
+ with gr.Blocks() as app:
191
+ gr.Markdown(
192
+ '''
193
+ <center><h1>Illusion Diffusion HQ πŸŒ€</h1></span>
194
+ <span font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</span>
195
+ </center>
196
+
197
+ A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG) with big contributions from [multimodalart](https://twitter.com/multimodalart)
198
+
199
+ This project works by using [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster).
200
+ Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: [MrUgleh](https://twitter.com/MrUgleh) for discovering the workflow :)
201
+ '''
202
+ )
203
+ state_img_input = gr.State()
204
+ state_img_output = gr.State()
205
+ with gr.Row():
206
+ with gr.Column():
207
+ control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
208
+ controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", elem_id="illusion_strength", info="ControlNet conditioning scale")
209
+ gr.Examples(examples=["checkers.png", "checkers_mid.jpg", "pattern.png", "ultra_checkers.png", "spiral.jpeg", "funky.jpeg" ], inputs=control_image)
210
+ prompt = gr.Textbox(label="Prompt", elem_id="prompt", info="Type what you want to generate", placeholder="Medieval village scene with busy streets and castle in the distance")
211
+ negative_prompt = gr.Textbox(label="Negative Prompt", info="Type what you don't want to see", value="low quality", elem_id="negative_prompt")
212
+ with gr.Accordion(label="Advanced Options", open=False):
213
+ guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
214
+ sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
215
+ control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="Start of ControlNet")
216
+ control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="End of ControlNet")
217
+ strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Strength of the upscaler")
218
+ seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 means random seed")
219
+ used_seed = gr.Number(label="Last seed used",interactive=False)
220
+ run_btn = gr.Button("Run")
221
+ with gr.Column():
222
+ result_image = gr.Image(label="Illusion Diffusion Output", interactive=False, elem_id="output")
223
+ with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
224
+ community_icon = gr.HTML(community_icon_html)
225
+ loading_icon = gr.HTML(loading_icon_html)
226
+ share_button = gr.Button("Share to community", elem_id="share-btn")
227
+
228
+ prompt.submit(
229
+ check_inputs,
230
+ inputs=[prompt, control_image],
231
+ queue=False
232
+ ).success(
233
+ convert_to_pil,
234
+ inputs=[control_image],
235
+ outputs=[state_img_input],
236
+ queue=False,
237
+ preprocess=False,
238
+ ).success(
239
+ inference,
240
+ inputs=[state_img_input, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
241
+ outputs=[state_img_output, result_image, share_group, used_seed]
242
+ ).success(
243
+ convert_to_base64,
244
+ inputs=[state_img_output],
245
+ outputs=[result_image],
246
+ queue=False,
247
+ postprocess=False
248
+ )
249
+ run_btn.click(
250
+ check_inputs,
251
+ inputs=[prompt, control_image],
252
+ queue=False
253
+ ).success(
254
+ convert_to_pil,
255
+ inputs=[control_image],
256
+ outputs=[state_img_input],
257
+ queue=False,
258
+ preprocess=False,
259
+ ).success(
260
+ inference,
261
+ inputs=[state_img_input, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
262
+ outputs=[state_img_output, result_image, share_group, used_seed]
263
+ ).success(
264
+ convert_to_base64,
265
+ inputs=[state_img_output],
266
+ outputs=[result_image],
267
+ queue=False,
268
+ postprocess=False
269
+ )
270
+ share_button.click(None, [], [], _js=share_js)
271
+
272
+ with gr.Blocks(css=css) as app_with_history:
273
+ with gr.Tab("Demo"):
274
+ app.render()
275
+ with gr.Tab("Past generations"):
276
+ user_history.render()
277
+
278
+ app_with_history.queue(max_size=20,api_open=False )
279
+
280
+ if __name__ == "__main__":
281
+ app_with_history.launch(max_threads=400)