Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from io import BytesIO | |
from PIL import Image | |
import time | |
from transformers import AutoImageProcessor, ViTForImageClassification | |
import torch | |
image_processor = AutoImageProcessor.from_pretrained("dhanesh123in/image_classification_obipix_birdID") | |
model_s = ViTForImageClassification.from_pretrained("dhanesh123in/image_classification_obipix_birdID") | |
st.title("Welcome to Bird Species Identification App!") | |
uploaded_file = st.file_uploader("Upload Image") | |
if uploaded_file is not None: | |
# To read file as bytes: | |
bytes_data = uploaded_file.getvalue() | |
image = Image.open(BytesIO(bytes_data)) | |
inputs = image_processor(image, return_tensors="pt") | |
with torch.no_grad(): | |
logits = model_s(**inputs).logits | |
# model predicts one of the 1000 ImageNet classes | |
predicted_label = logits.argmax(-1).item() | |
prediction=model_s.config.id2label[predicted_label] | |
with st.spinner('Our well trained AI assistant is looking at your image...'): | |
time.sleep(5) | |
st.success("Prediction is "+prediction) | |
st.image(bytes_data) | |
x=st.radio("Was this correct?",["Yes","No"],horizontal=True) | |
if (x=="No"): | |
st.write("Oops.. more to learn I guess") | |