Spaces:
Runtime error
Runtime error
Yulu Fu
commited on
Attempt to add image model
Browse files
app.py
CHANGED
@@ -1,14 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
# Load the
|
5 |
-
|
|
|
6 |
|
7 |
# Define the prediction function
|
8 |
-
def predict(
|
9 |
-
print("
|
10 |
try:
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
print("Raw prediction result:", result) # Debugging statement
|
13 |
# Convert the result to the expected format
|
14 |
output = {item['label']: item['score'] for item in result}
|
@@ -18,14 +25,34 @@ def predict(audio):
|
|
18 |
print("Error during prediction:", e) # Debugging statement
|
19 |
return {"error": str(e)}
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Create the Gradio interface
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
# Launch the interface
|
31 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Load the models using pipeline
|
5 |
+
audio_model = pipeline("audio-classification", model="MelodyMachine/Deepfake-audio-detection-V2")
|
6 |
+
image_model = pipeline("image-classification", model="dima806/deepfake_vs_real_image_detection")
|
7 |
|
8 |
# Define the prediction function
|
9 |
+
def predict(data, model_choice):
|
10 |
+
print("Data received:", data) # Debugging statement
|
11 |
try:
|
12 |
+
if model_choice == "Audio Deepfake Detection":
|
13 |
+
result = audio_model(data)
|
14 |
+
elif model_choice == "Image Deepfake Detection":
|
15 |
+
result = image_model(data)
|
16 |
+
else:
|
17 |
+
return {"error": "Invalid model choice"}
|
18 |
+
|
19 |
print("Raw prediction result:", result) # Debugging statement
|
20 |
# Convert the result to the expected format
|
21 |
output = {item['label']: item['score'] for item in result}
|
|
|
25 |
print("Error during prediction:", e) # Debugging statement
|
26 |
return {"error": str(e)}
|
27 |
|
28 |
+
# Define the interface based on the selected model
|
29 |
+
def update_interface(model_choice):
|
30 |
+
if model_choice == "Audio Deepfake Detection":
|
31 |
+
return gr.Audio(type="filepath"), gr.Label()
|
32 |
+
elif model_choice == "Image Deepfake Detection":
|
33 |
+
return gr.Image(type="filepath"), gr.Label()
|
34 |
+
else:
|
35 |
+
return None, None
|
36 |
+
|
37 |
# Create the Gradio interface
|
38 |
+
with gr.Blocks() as iface:
|
39 |
+
model_choice = gr.Radio(choices=["Audio Deepfake Detection", "Image Deepfake Detection"], label="Select Model", value="Audio Deepfake Detection")
|
40 |
+
input_component, output_component = update_interface(model_choice.value)
|
41 |
+
|
42 |
+
def update_inputs(model_choice):
|
43 |
+
input_component, output_component = update_interface(model_choice)
|
44 |
+
input_placeholder.update(visible=False)
|
45 |
+
output_placeholder.update(visible=False)
|
46 |
+
input_placeholder.update(visible=True, component=input_component)
|
47 |
+
output_placeholder.update(visible=True, component=output_component)
|
48 |
+
|
49 |
+
input_placeholder = gr.Placeholder(gr.Component, visible=True)
|
50 |
+
output_placeholder = gr.Placeholder(gr.Component, visible=True)
|
51 |
+
|
52 |
+
model_choice.change(fn=update_inputs, inputs=model_choice, outputs=[input_placeholder, output_placeholder])
|
53 |
+
|
54 |
+
submit_button = gr.Button("Submit")
|
55 |
+
submit_button.click(fn=predict, inputs=[input_placeholder, model_choice], outputs=output_placeholder)
|
56 |
+
|
57 |
+
iface.launch()
|
58 |
|
|
|
|