Spaces:
Runtime error
Runtime error
dhairyashah
commited on
Commit
•
44d6ec1
1
Parent(s):
7bfeab3
update
Browse files
app.py
CHANGED
@@ -1,179 +1,3 @@
|
|
1 |
import gradio as gr
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
import tensorflow as tf
|
5 |
-
import tensorflow_addons
|
6 |
|
7 |
-
|
8 |
-
from PIL import Image
|
9 |
-
import moviepy.editor as mp
|
10 |
-
import os
|
11 |
-
import zipfile
|
12 |
-
|
13 |
-
# local_zip = "FINAL-EFFICIENTNETV2-B0.zip"
|
14 |
-
# zip_ref = zipfile.ZipFile(local_zip, 'r')
|
15 |
-
# zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
|
16 |
-
# zip_ref.close()
|
17 |
-
|
18 |
-
# Load face detector
|
19 |
-
mtcnn = MTCNN(margin=14, keep_all=True, factor=0.7, device='cpu')
|
20 |
-
|
21 |
-
#Face Detection function, Reference: (Timesler, 2020); Source link: https://www.kaggle.com/timesler/facial-recognition-model-in-pytorch
|
22 |
-
class DetectionPipeline:
|
23 |
-
"""Pipeline class for detecting faces in the frames of a video file."""
|
24 |
-
|
25 |
-
def __init__(self, detector, n_frames=None, batch_size=60, resize=None):
|
26 |
-
"""Constructor for DetectionPipeline class.
|
27 |
-
|
28 |
-
Keyword Arguments:
|
29 |
-
n_frames {int} -- Total number of frames to load. These will be evenly spaced
|
30 |
-
throughout the video. If not specified (i.e., None), all frames will be loaded.
|
31 |
-
(default: {None})
|
32 |
-
batch_size {int} -- Batch size to use with MTCNN face detector. (default: {32})
|
33 |
-
resize {float} -- Fraction by which to resize frames from original prior to face
|
34 |
-
detection. A value less than 1 results in downsampling and a value greater than
|
35 |
-
1 result in upsampling. (default: {None})
|
36 |
-
"""
|
37 |
-
self.detector = detector
|
38 |
-
self.n_frames = n_frames
|
39 |
-
self.batch_size = batch_size
|
40 |
-
self.resize = resize
|
41 |
-
|
42 |
-
def __call__(self, filename):
|
43 |
-
"""Load frames from an MP4 video and detect faces.
|
44 |
-
|
45 |
-
Arguments:
|
46 |
-
filename {str} -- Path to video.
|
47 |
-
"""
|
48 |
-
# Create video reader and find length
|
49 |
-
v_cap = cv2.VideoCapture(filename)
|
50 |
-
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
51 |
-
|
52 |
-
# Pick 'n_frames' evenly spaced frames to sample
|
53 |
-
if self.n_frames is None:
|
54 |
-
sample = np.arange(0, v_len)
|
55 |
-
else:
|
56 |
-
sample = np.linspace(0, v_len - 1, self.n_frames).astype(int)
|
57 |
-
|
58 |
-
# Loop through frames
|
59 |
-
faces = []
|
60 |
-
frames = []
|
61 |
-
for j in range(v_len):
|
62 |
-
success = v_cap.grab()
|
63 |
-
if j in sample:
|
64 |
-
# Load frame
|
65 |
-
success, frame = v_cap.retrieve()
|
66 |
-
if not success:
|
67 |
-
continue
|
68 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
69 |
-
# frame = Image.fromarray(frame)
|
70 |
-
|
71 |
-
# Resize frame to desired size
|
72 |
-
if self.resize is not None:
|
73 |
-
frame = frame.resize([int(d * self.resize) for d in frame.size])
|
74 |
-
frames.append(frame)
|
75 |
-
|
76 |
-
# When batch is full, detect faces and reset frame list
|
77 |
-
if len(frames) % self.batch_size == 0 or j == sample[-1]:
|
78 |
-
|
79 |
-
boxes, probs = self.detector.detect(frames)
|
80 |
-
|
81 |
-
for i in range(len(frames)):
|
82 |
-
|
83 |
-
if boxes[i] is None:
|
84 |
-
faces.append(face2) #append previous face frame if no face is detected
|
85 |
-
continue
|
86 |
-
|
87 |
-
box = boxes[i][0].astype(int)
|
88 |
-
frame = frames[i]
|
89 |
-
face = frame[box[1]:box[3], box[0]:box[2]]
|
90 |
-
|
91 |
-
if not face.any():
|
92 |
-
faces.append(face2) #append previous face frame if no face is detected
|
93 |
-
continue
|
94 |
-
|
95 |
-
face2 = cv2.resize(face, (224, 224))
|
96 |
-
|
97 |
-
faces.append(face2)
|
98 |
-
|
99 |
-
frames = []
|
100 |
-
|
101 |
-
v_cap.release()
|
102 |
-
|
103 |
-
return faces
|
104 |
-
|
105 |
-
|
106 |
-
detection_pipeline = DetectionPipeline(detector=mtcnn,n_frames=20, batch_size=60)
|
107 |
-
|
108 |
-
model = tf.keras.models.load_model("./EfficientNetV2_Deepfakes_Video_Detector/p1")
|
109 |
-
|
110 |
-
|
111 |
-
def deepfakespredict(input_video):
|
112 |
-
|
113 |
-
faces = detection_pipeline(input_video)
|
114 |
-
|
115 |
-
total = 0
|
116 |
-
real = 0
|
117 |
-
fake = 0
|
118 |
-
|
119 |
-
for face in faces:
|
120 |
-
|
121 |
-
face2 = face/255
|
122 |
-
pred = model.predict(np.expand_dims(face2, axis=0))[0]
|
123 |
-
total+=1
|
124 |
-
|
125 |
-
pred2 = pred[1]
|
126 |
-
|
127 |
-
if pred2 > 0.5:
|
128 |
-
fake+=1
|
129 |
-
else:
|
130 |
-
real+=1
|
131 |
-
|
132 |
-
fake_ratio = fake/total
|
133 |
-
|
134 |
-
text =""
|
135 |
-
text2 = "Deepfakes Confidence: " + str(fake_ratio*100) + "%"
|
136 |
-
|
137 |
-
if fake_ratio >= 0.5:
|
138 |
-
text = "The video is FAKE."
|
139 |
-
else:
|
140 |
-
text = "The video is REAL."
|
141 |
-
|
142 |
-
face_frames = []
|
143 |
-
|
144 |
-
for face in faces:
|
145 |
-
face_frame = Image.fromarray(face.astype('uint8'), 'RGB')
|
146 |
-
face_frames.append(face_frame)
|
147 |
-
|
148 |
-
face_frames[0].save('results.gif', save_all=True, append_images=face_frames[1:], duration = 250, loop = 100 )
|
149 |
-
clip = mp.VideoFileClip("results.gif")
|
150 |
-
clip.write_videofile("video.mp4")
|
151 |
-
|
152 |
-
return text, text2, "video.mp4"
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
title="EfficientNetV2 Deepfakes Video Detector"
|
157 |
-
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector by using frame-by-frame detection. \
|
158 |
-
To use it, simply upload your video, or click one of the examples to load them.\
|
159 |
-
This demo and model represent the Final Year Project titled \"Achieving Face Swapped Deepfakes Detection Using EfficientNetV2\" by a CS undergraduate Lee Sheng Yeh. \
|
160 |
-
The examples were extracted from Celeb-DF(V2)(Li et al, 2020) and FaceForensics++(Rossler et al., 2019). Full reference details is available in \"references.txt.\" \
|
161 |
-
The examples are used under fair use to demo the working of the model only. If any copyright is infringed, please contact the researcher via this email: tp054565@mail.apu.edu.my.\
|
162 |
-
"
|
163 |
-
|
164 |
-
examples = [
|
165 |
-
['./EfficientNetV2_Deepfakes_Video_Detector/Video1-fake-1-ff.mp4'],
|
166 |
-
['./EfficientNetV2_Deepfakes_Video_Detector/Video6-real-1-ff.mp4'],
|
167 |
-
['./EfficientNetV2_Deepfakes_Video_Detector/Video3-fake-3-ff.mp4'],
|
168 |
-
['./EfficientNetV2_Deepfakes_Video_Detector/Video8-real-3-ff.mp4'],
|
169 |
-
['./EfficientNetV2_Deepfakes_Video_Detector/real-1.mp4'],
|
170 |
-
['./EfficientNetV2_Deepfakes_Video_Detector/fake-1.mp4'],
|
171 |
-
]
|
172 |
-
|
173 |
-
gr.Interface(deepfakespredict,
|
174 |
-
inputs = ["video"],
|
175 |
-
outputs=["text","text", gr.outputs.Video(label="Detected face sequence")],
|
176 |
-
title=title,
|
177 |
-
description=description,
|
178 |
-
examples=examples
|
179 |
-
).launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
gr.load("models/DaMsTaR/Detecto-DeepFake_Video_Detector").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|