Spaces:
Running
Running
import gradio as gr | |
import os, gc, copy, torch | |
from datetime import datetime | |
from huggingface_hub import hf_hub_download | |
from pynvml import * | |
nvmlInit() | |
gpu_h = nvmlDeviceGetHandleByIndex(0) | |
ctx_limit = 3000 | |
title = "RWKV-5-World-1.5B-v2-OnlyForTest_56%_trained-20231013-ctx4096" | |
os.environ["RWKV_JIT_ON"] = '1' | |
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) | |
from rwkv.model import RWKV | |
model_path = hf_hub_download(repo_id="BlinkDL/temp", filename=f"{title}.pth") | |
model = RWKV(model=model_path, strategy='cuda fp16') | |
from rwkv.utils import PIPELINE, PIPELINE_ARGS | |
pipeline = PIPELINE(model, "rwkv_vocab_v20230424") | |
def generate_prompt(instruction, input=None): | |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') | |
input = input.strip().replace('\r\n','\n').replace('\n\n','\n') | |
if input: | |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
# Instruction: | |
{instruction} | |
# Input: | |
{input} | |
# Response: | |
""" | |
else: | |
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
# Instruction: | |
{instruction} | |
# Response: | |
""" | |
def evaluate( | |
instruction, | |
input=None, | |
token_count=200, | |
temperature=1.0, | |
top_p=0.7, | |
presencePenalty = 0.1, | |
countPenalty = 0.1, | |
): | |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), | |
alpha_frequency = countPenalty, | |
alpha_presence = presencePenalty, | |
token_ban = [], # ban the generation of some tokens | |
token_stop = [0]) # stop generation whenever you see any token here | |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') | |
input = input.strip().replace('\r\n','\n').replace('\n\n','\n') | |
ctx = generate_prompt(instruction, input) | |
all_tokens = [] | |
out_last = 0 | |
out_str = '' | |
occurrence = {} | |
state = None | |
for i in range(int(token_count)): | |
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) | |
for n in occurrence: | |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) | |
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) | |
if token in args.token_stop: | |
break | |
all_tokens += [token] | |
for xxx in occurrence: | |
occurrence[xxx] *= 0.996 | |
if token not in occurrence: | |
occurrence[token] = 1 | |
else: | |
occurrence[token] += 1 | |
tmp = pipeline.decode(all_tokens[out_last:]) | |
if '\ufffd' not in tmp: | |
out_str += tmp | |
yield out_str.strip() | |
out_last = i + 1 | |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) | |
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') | |
del out | |
del state | |
gc.collect() | |
torch.cuda.empty_cache() | |
yield out_str.strip() | |
examples = [ | |
["Tell me about ravens.", "", 300, 1, 0.5, 0.4, 0.4], | |
["Write a python function to mine 1 BTC, with details and comments.", "", 300, 1, 0.5, 0.4, 0.4], | |
["Write a song about ravens.", "", 300, 1, 0.5, 0.4, 0.4], | |
["Explain the following metaphor: Life is like cats.", "", 300, 1, 0.5, 0.4, 0.4], | |
["Write a story using the following information", "A man named Alex chops a tree down", 300, 1, 0.5, 0.4, 0.4], | |
["Generate a list of adjectives that describe a person as brave.", "", 300, 1, 0.5, 0.4, 0.4], | |
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 300, 1, 0.5, 0.4, 0.4], | |
] | |
########################################################################## | |
with gr.Blocks(title=title) as demo: | |
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>RWKV-5 World v2 - {title}</h1>\n</div>") | |
with gr.Tab("Instruct mode"): | |
gr.Markdown(f"This is a 1.5B [RWKV-5 World v2](https://huggingface.co/BlinkDL/rwkv-5-world) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM). *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen {ctx_limit}. For best results, *** keep you prompt short and clear ***.") | |
with gr.Row(): | |
with gr.Column(): | |
instruction = gr.Textbox(lines=2, label="Instruction", value="Tell me about ravens.") | |
input = gr.Textbox(lines=2, label="Input", placeholder="none") | |
token_count = gr.Slider(10, 500, label="Max Tokens", step=10, value=500) | |
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0) | |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5) | |
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.4) | |
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.4) | |
with gr.Column(): | |
with gr.Row(): | |
submit = gr.Button("Submit", variant="primary") | |
clear = gr.Button("Clear", variant="secondary") | |
output = gr.Textbox(label="Output", lines=5) | |
data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"]) | |
submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output]) | |
clear.click(lambda: None, [], [output]) | |
data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty]) | |
demo.queue(concurrency_count=1, max_size=10) | |
demo.launch(share=False) | |