Spaces:
Sleeping
Sleeping
| from loguru import logger | |
| import torch | |
| import torch.nn as nn | |
| def sample_non_matches(pos_mask, match_ids=None, sampling_ratio=10): | |
| # assert (pos_mask.shape == mask.shape) # [B, H*W, H*W] | |
| if match_ids is not None: | |
| HW = pos_mask.shape[1] | |
| b_ids, i_ids, j_ids = match_ids | |
| if len(b_ids) == 0: | |
| return ~pos_mask | |
| neg_mask = torch.zeros_like(pos_mask) | |
| probs = torch.ones((HW - 1) // 3, device=pos_mask.device) | |
| for _ in range(sampling_ratio): | |
| d = torch.multinomial(probs, len(j_ids), replacement=True) | |
| sampled_j_ids = (j_ids + d * 3 + 1) % HW | |
| neg_mask[b_ids, i_ids, sampled_j_ids] = True | |
| # neg_mask = neg_matrix == 1 | |
| else: | |
| neg_mask = ~pos_mask | |
| return neg_mask | |
| class TopicFMLoss(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config # config under the global namespace | |
| self.loss_config = config["model"]["loss"] | |
| self.match_type = self.config["model"]["match_coarse"]["match_type"] | |
| # coarse-level | |
| self.correct_thr = self.loss_config["fine_correct_thr"] | |
| self.c_pos_w = self.loss_config["pos_weight"] | |
| self.c_neg_w = self.loss_config["neg_weight"] | |
| # fine-level | |
| self.fine_type = self.loss_config["fine_type"] | |
| def compute_coarse_loss( | |
| self, conf, topic_mat, conf_gt, match_ids=None, weight=None | |
| ): | |
| """Point-wise CE / Focal Loss with 0 / 1 confidence as gt. | |
| Args: | |
| conf (torch.Tensor): (N, HW0, HW1) / (N, HW0+1, HW1+1) | |
| conf_gt (torch.Tensor): (N, HW0, HW1) | |
| weight (torch.Tensor): (N, HW0, HW1) | |
| """ | |
| pos_mask = conf_gt == 1 | |
| neg_mask = sample_non_matches(pos_mask, match_ids=match_ids) | |
| c_pos_w, c_neg_w = self.c_pos_w, self.c_neg_w | |
| # corner case: no gt coarse-level match at all | |
| if not pos_mask.any(): # assign a wrong gt | |
| pos_mask[0, 0, 0] = True | |
| if weight is not None: | |
| weight[0, 0, 0] = 0.0 | |
| c_pos_w = 0.0 | |
| if not neg_mask.any(): | |
| neg_mask[0, 0, 0] = True | |
| if weight is not None: | |
| weight[0, 0, 0] = 0.0 | |
| c_neg_w = 0.0 | |
| conf = torch.clamp(conf, 1e-6, 1 - 1e-6) | |
| alpha = self.loss_config["focal_alpha"] | |
| loss = 0.0 | |
| if isinstance(topic_mat, torch.Tensor): | |
| pos_topic = topic_mat[pos_mask] | |
| loss_pos_topic = -alpha * (pos_topic + 1e-6).log() | |
| neg_topic = topic_mat[neg_mask] | |
| loss_neg_topic = -alpha * (1 - neg_topic + 1e-6).log() | |
| if weight is not None: | |
| loss_pos_topic = loss_pos_topic * weight[pos_mask] | |
| loss_neg_topic = loss_neg_topic * weight[neg_mask] | |
| loss = loss_pos_topic.mean() + loss_neg_topic.mean() | |
| pos_conf = conf[pos_mask] | |
| loss_pos = -alpha * pos_conf.log() | |
| # handle loss weights | |
| if weight is not None: | |
| # Different from dense-spvs, the loss w.r.t. padded regions aren't directly zeroed out, | |
| # but only through manually setting corresponding regions in sim_matrix to '-inf'. | |
| loss_pos = loss_pos * weight[pos_mask] | |
| loss = loss + c_pos_w * loss_pos.mean() | |
| return loss | |
| def compute_fine_loss(self, expec_f, expec_f_gt): | |
| if self.fine_type == "l2_with_std": | |
| return self._compute_fine_loss_l2_std(expec_f, expec_f_gt) | |
| elif self.fine_type == "l2": | |
| return self._compute_fine_loss_l2(expec_f, expec_f_gt) | |
| else: | |
| raise NotImplementedError() | |
| def _compute_fine_loss_l2(self, expec_f, expec_f_gt): | |
| """ | |
| Args: | |
| expec_f (torch.Tensor): [M, 2] <x, y> | |
| expec_f_gt (torch.Tensor): [M, 2] <x, y> | |
| """ | |
| correct_mask = ( | |
| torch.linalg.norm(expec_f_gt, ord=float("inf"), dim=1) < self.correct_thr | |
| ) | |
| if correct_mask.sum() == 0: | |
| if ( | |
| self.training | |
| ): # this seldomly happen when training, since we pad prediction with gt | |
| logger.warning("assign a false supervision to avoid ddp deadlock") | |
| correct_mask[0] = True | |
| else: | |
| return None | |
| offset_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask]) ** 2).sum(-1) | |
| return offset_l2.mean() | |
| def _compute_fine_loss_l2_std(self, expec_f, expec_f_gt): | |
| """ | |
| Args: | |
| expec_f (torch.Tensor): [M, 3] <x, y, std> | |
| expec_f_gt (torch.Tensor): [M, 2] <x, y> | |
| """ | |
| # correct_mask tells you which pair to compute fine-loss | |
| correct_mask = ( | |
| torch.linalg.norm(expec_f_gt, ord=float("inf"), dim=1) < self.correct_thr | |
| ) | |
| # use std as weight that measures uncertainty | |
| std = expec_f[:, 2] | |
| inverse_std = 1.0 / torch.clamp(std, min=1e-10) | |
| weight = ( | |
| inverse_std / torch.mean(inverse_std) | |
| ).detach() # avoid minizing loss through increase std | |
| # corner case: no correct coarse match found | |
| if not correct_mask.any(): | |
| if ( | |
| self.training | |
| ): # this seldomly happen during training, since we pad prediction with gt | |
| # sometimes there is not coarse-level gt at all. | |
| logger.warning("assign a false supervision to avoid ddp deadlock") | |
| correct_mask[0] = True | |
| weight[0] = 0.0 | |
| else: | |
| return None | |
| # l2 loss with std | |
| offset_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask, :2]) ** 2).sum( | |
| -1 | |
| ) | |
| loss = (offset_l2 * weight[correct_mask]).mean() | |
| return loss | |
| def compute_c_weight(self, data): | |
| """compute element-wise weights for computing coarse-level loss.""" | |
| if "mask0" in data: | |
| c_weight = ( | |
| data["mask0"].flatten(-2)[..., None] | |
| * data["mask1"].flatten(-2)[:, None] | |
| ).float() | |
| else: | |
| c_weight = None | |
| return c_weight | |
| def forward(self, data): | |
| """ | |
| Update: | |
| data (dict): update{ | |
| 'loss': [1] the reduced loss across a batch, | |
| 'loss_scalars' (dict): loss scalars for tensorboard_record | |
| } | |
| """ | |
| loss_scalars = {} | |
| # 0. compute element-wise loss weight | |
| c_weight = self.compute_c_weight(data) | |
| # 1. coarse-level loss | |
| loss_c = self.compute_coarse_loss( | |
| data["conf_matrix"], | |
| data["topic_matrix"], | |
| data["conf_matrix_gt"], | |
| match_ids=(data["spv_b_ids"], data["spv_i_ids"], data["spv_j_ids"]), | |
| weight=c_weight, | |
| ) | |
| loss = loss_c * self.loss_config["coarse_weight"] | |
| loss_scalars.update({"loss_c": loss_c.clone().detach().cpu()}) | |
| # 2. fine-level loss | |
| loss_f = self.compute_fine_loss(data["expec_f"], data["expec_f_gt"]) | |
| if loss_f is not None: | |
| loss += loss_f * self.loss_config["fine_weight"] | |
| loss_scalars.update({"loss_f": loss_f.clone().detach().cpu()}) | |
| else: | |
| assert self.training is False | |
| loss_scalars.update({"loss_f": torch.tensor(1.0)}) # 1 is the upper bound | |
| loss_scalars.update({"loss": loss.clone().detach().cpu()}) | |
| data.update({"loss": loss, "loss_scalars": loss_scalars}) | |