Spaces:
Sleeping
Sleeping
| from .transformations import quaternion_from_matrix | |
| import numpy as np | |
| import os | |
| import sys | |
| def evaluate_R_t(R_gt, t_gt, R, t): | |
| t = t.flatten() | |
| t_gt = t_gt.flatten() | |
| eps = 1e-15 | |
| q_gt = quaternion_from_matrix(R_gt) | |
| q = quaternion_from_matrix(R) | |
| q = q / (np.linalg.norm(q) + eps) | |
| q_gt = q_gt / (np.linalg.norm(q_gt) + eps) | |
| loss_q = np.maximum(eps, (1.0 - np.sum(q * q_gt) ** 2)) | |
| err_q = np.arccos(1 - 2 * loss_q) | |
| t = t / (np.linalg.norm(t) + eps) | |
| t_gt = t_gt / (np.linalg.norm(t_gt) + eps) | |
| loss_t = np.maximum(eps, (1.0 - np.sum(t * t_gt) ** 2)) | |
| err_t = np.arccos(np.sqrt(1 - loss_t)) | |
| return np.rad2deg(err_q), np.rad2deg(err_t) | |
| def pose_auc(errors, thresholds): | |
| sort_idx = np.argsort(errors) | |
| errors = np.array(errors.copy())[sort_idx] | |
| recall = (np.arange(len(errors)) + 1) / len(errors) | |
| errors = np.r_[0.0, errors] | |
| recall = np.r_[0.0, recall] | |
| aucs = [] | |
| for t in thresholds[1:]: | |
| last_index = np.searchsorted(errors, t) | |
| r = np.r_[recall[:last_index], recall[last_index - 1]] | |
| e = np.r_[errors[:last_index], t] | |
| aucs.append(np.trapz(r, x=e) / t) | |
| return aucs | |
| def approx_pose_auc(errors, thresholds): | |
| qt_acc_hist, _ = np.histogram(errors, thresholds) | |
| num_pair = float(len(errors)) | |
| qt_acc_hist = qt_acc_hist.astype(float) / num_pair | |
| qt_acc = np.cumsum(qt_acc_hist) | |
| approx_aucs = [np.mean(qt_acc[:i]) for i in range(1, len(thresholds))] | |
| return approx_aucs | |
| def compute_epi_inlier(x1, x2, E, inlier_th): | |
| num_pts1, num_pts2 = x1.shape[0], x2.shape[0] | |
| x1_h = np.concatenate([x1, np.ones([num_pts1, 1])], -1) | |
| x2_h = np.concatenate([x2, np.ones([num_pts2, 1])], -1) | |
| ep_line1 = x1_h @ E.T | |
| ep_line2 = x2_h @ E | |
| norm_factor = ( | |
| 1 / np.sqrt((ep_line1[:, :2] ** 2).sum(1)) | |
| + 1 / np.sqrt((ep_line2[:, :2] ** 2).sum(1)) | |
| ) / 2 | |
| dis = abs((ep_line1 * x2_h).sum(-1)) * norm_factor | |
| inlier_mask = dis < inlier_th | |
| return inlier_mask | |