Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import matplotlib | |
| import seaborn as sns | |
| def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5): | |
| """Plot a set of images horizontally. | |
| Args: | |
| imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W). | |
| titles: a list of strings, as titles for each image. | |
| cmaps: colormaps for monochrome images. | |
| """ | |
| n = len(imgs) | |
| if not isinstance(cmaps, (list, tuple)): | |
| cmaps = [cmaps] * n | |
| # figsize = (size*n, size*3/4) if size is not None else None | |
| figsize = (size * n, size * 6 / 5) if size is not None else None | |
| fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi) | |
| if n == 1: | |
| ax = [ax] | |
| for i in range(n): | |
| ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i])) | |
| ax[i].get_yaxis().set_ticks([]) | |
| ax[i].get_xaxis().set_ticks([]) | |
| ax[i].set_axis_off() | |
| for spine in ax[i].spines.values(): # remove frame | |
| spine.set_visible(False) | |
| if titles: | |
| ax[i].set_title(titles[i]) | |
| fig.tight_layout(pad=pad) | |
| return fig | |
| def plot_color_line_matches(lines, correct_matches=None, lw=2, indices=(0, 1)): | |
| """Plot line matches for existing images with multiple colors. | |
| Args: | |
| lines: list of ndarrays of size (N, 2, 2). | |
| correct_matches: bool array of size (N,) indicating correct matches. | |
| lw: line width as float pixels. | |
| indices: indices of the images to draw the matches on. | |
| """ | |
| n_lines = len(lines[0]) | |
| colors = sns.color_palette("husl", n_colors=n_lines) | |
| np.random.shuffle(colors) | |
| alphas = np.ones(n_lines) | |
| # If correct_matches is not None, display wrong matches with a low alpha | |
| if correct_matches is not None: | |
| alphas[~np.array(correct_matches)] = 0.2 | |
| fig = plt.gcf() | |
| ax = fig.axes | |
| assert len(ax) > max(indices) | |
| axes = [ax[i] for i in indices] | |
| fig.canvas.draw() | |
| # Plot the lines | |
| for a, l in zip(axes, lines): | |
| # Transform the points into the figure coordinate system | |
| transFigure = fig.transFigure.inverted() | |
| endpoint0 = transFigure.transform(a.transData.transform(l[:, 0])) | |
| endpoint1 = transFigure.transform(a.transData.transform(l[:, 1])) | |
| fig.lines += [ | |
| matplotlib.lines.Line2D( | |
| (endpoint0[i, 0], endpoint1[i, 0]), | |
| (endpoint0[i, 1], endpoint1[i, 1]), | |
| zorder=1, | |
| transform=fig.transFigure, | |
| c=colors[i], | |
| alpha=alphas[i], | |
| linewidth=lw, | |
| ) | |
| for i in range(n_lines) | |
| ] | |
| return fig | |
| def make_matching_figure( | |
| img0, | |
| img1, | |
| mkpts0, | |
| mkpts1, | |
| color, | |
| titles=None, | |
| kpts0=None, | |
| kpts1=None, | |
| text=[], | |
| dpi=75, | |
| path=None, | |
| pad=0, | |
| ): | |
| # draw image pair | |
| # assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}' | |
| fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi) | |
| axes[0].imshow(img0) # , cmap='gray') | |
| axes[1].imshow(img1) # , cmap='gray') | |
| for i in range(2): # clear all frames | |
| axes[i].get_yaxis().set_ticks([]) | |
| axes[i].get_xaxis().set_ticks([]) | |
| for spine in axes[i].spines.values(): | |
| spine.set_visible(False) | |
| if titles is not None: | |
| axes[i].set_title(titles[i]) | |
| plt.tight_layout(pad=pad) | |
| if kpts0 is not None: | |
| assert kpts1 is not None | |
| axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5) | |
| axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5) | |
| # draw matches | |
| if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0: | |
| fig.canvas.draw() | |
| transFigure = fig.transFigure.inverted() | |
| fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0)) | |
| fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1)) | |
| fig.lines = [ | |
| matplotlib.lines.Line2D( | |
| (fkpts0[i, 0], fkpts1[i, 0]), | |
| (fkpts0[i, 1], fkpts1[i, 1]), | |
| transform=fig.transFigure, | |
| c=color[i], | |
| linewidth=2, | |
| ) | |
| for i in range(len(mkpts0)) | |
| ] | |
| # freeze the axes to prevent the transform to change | |
| axes[0].autoscale(enable=False) | |
| axes[1].autoscale(enable=False) | |
| axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4) | |
| axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4) | |
| # put txts | |
| txt_color = "k" if img0[:100, :200].mean() > 200 else "w" | |
| fig.text( | |
| 0.01, | |
| 0.99, | |
| "\n".join(text), | |
| transform=fig.axes[0].transAxes, | |
| fontsize=15, | |
| va="top", | |
| ha="left", | |
| color=txt_color, | |
| ) | |
| # save or return figure | |
| if path: | |
| plt.savefig(str(path), bbox_inches="tight", pad_inches=0) | |
| plt.close() | |
| else: | |
| return fig | |
| def error_colormap(err, thr, alpha=1.0): | |
| assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}" | |
| x = 1 - np.clip(err / (thr * 2), 0, 1) | |
| return np.clip( | |
| np.stack( | |
| [2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1 | |
| ), | |
| 0, | |
| 1, | |
| ) | |
| np.random.seed(1995) | |
| color_map = np.arange(100) | |
| np.random.shuffle(color_map) | |
| def fig2im(fig): | |
| fig.canvas.draw() | |
| w, h = fig.canvas.get_width_height() | |
| buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1") | |
| im = buf_ndarray.reshape(h, w, 3) | |
| return im | |
| def draw_matches( | |
| mkpts0, mkpts1, img0, img1, conf, titles=None, dpi=150, path=None, pad=0.5 | |
| ): | |
| thr = 5e-4 | |
| thr = 0.5 | |
| color = error_colormap(conf, thr, alpha=0.1) | |
| text = [ | |
| f"image name", | |
| f"#Matches: {len(mkpts0)}", | |
| ] | |
| if path: | |
| fig2im( | |
| make_matching_figure( | |
| img0, | |
| img1, | |
| mkpts0, | |
| mkpts1, | |
| color, | |
| titles=titles, | |
| text=text, | |
| path=path, | |
| dpi=dpi, | |
| pad=pad, | |
| ) | |
| ) | |
| else: | |
| return fig2im( | |
| make_matching_figure( | |
| img0, | |
| img1, | |
| mkpts0, | |
| mkpts1, | |
| color, | |
| titles=titles, | |
| text=text, | |
| pad=pad, | |
| dpi=dpi, | |
| ) | |
| ) | |
| def draw_image_pairs(img0, img1, text=[], dpi=75, path=None, pad=0.5): | |
| # draw image pair | |
| fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi) | |
| axes[0].imshow(img0) # , cmap='gray') | |
| axes[1].imshow(img1) # , cmap='gray') | |
| for i in range(2): # clear all frames | |
| axes[i].get_yaxis().set_ticks([]) | |
| axes[i].get_xaxis().set_ticks([]) | |
| for spine in axes[i].spines.values(): | |
| spine.set_visible(False) | |
| plt.tight_layout(pad=pad) | |
| # put txts | |
| txt_color = "k" if img0[:100, :200].mean() > 200 else "w" | |
| fig.text( | |
| 0.01, | |
| 0.99, | |
| "\n".join(text), | |
| transform=fig.axes[0].transAxes, | |
| fontsize=15, | |
| va="top", | |
| ha="left", | |
| color=txt_color, | |
| ) | |
| # save or return figure | |
| if path: | |
| plt.savefig(str(path), bbox_inches="tight", pad_inches=0) | |
| plt.close() | |
| else: | |
| return fig2im(fig) | |