Spaces:
Runtime error
Runtime error
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
from PIL import Image | |
from pathlib import Path | |
import joblib | |
import numpy as np | |
import cv2 | |
import onnxruntime as ort | |
import imutils | |
# import matplotlib.pyplot as plt | |
import pandas as pd | |
import plotly.express as px | |
def scale_model_outputs(scaler_path, data): | |
scaler= joblib.load(scaler_path) | |
scaled=scaler.inverse_transform(data) | |
return(scaled) | |
def onnx_predict_lineage_population(input_image): | |
ort_session = ort.InferenceSession('onnx_models/lineage_population_model.onnx') | |
img = Image.fromarray(np.uint8(input_image)) | |
resized = img.resize((256, 256), Image.NEAREST) | |
transposed=np.transpose(resized, (2, 1, 0)) | |
img_unsqueeze = expand_dims(transposed) | |
onnx_outputs = ort_session.run(None, {'input': img_unsqueeze.astype('float32')}) | |
return(onnx_outputs[0]) | |
def expand_dims(arr): | |
norm=(arr-np.min(arr))/(np.max(arr)-np.min(arr)) #normalize | |
ret = np.expand_dims(norm, axis=0) | |
return(ret) | |
def lineage_population_model(): | |
selected_box2 = st.sidebar.selectbox( | |
'Choose Example Input', | |
(['Example_1.png']) | |
) | |
st.title('Predict Cell Lineage Populations') | |
instructions = """ | |
Predict the population of cells in C. elegans embryo using fluorescence microscopy data. \n | |
Either upload your own image or select from the sidebar to get a preconfigured image. | |
The image you select or upload will be fed through the Deep Neural Network in real-time | |
and the output will be displayed to the screen. | |
""" | |
st.text(instructions) | |
file = st.file_uploader('Upload an image or choose an example') | |
example_image = Image.open('./images/lineage_population_examples/'+selected_box2).convert("RGB") | |
col1, col2= st.beta_columns(2) | |
if file: | |
input = Image.open(file).convert("RGB") | |
fig1 = px.imshow(input, binary_string=True, labels=dict(x="Input Image")) | |
fig1.update(layout_coloraxis_showscale=False) | |
fig1.update_layout(margin=dict(l=0, r=0, b=0, t=0)) | |
col1.plotly_chart(fig1, use_container_width=True) | |
else: | |
input = example_image | |
fig1 = px.imshow(input, binary_string=True, labels=dict(x="Input Image")) | |
fig1.update(layout_coloraxis_showscale=False) | |
fig1.update_layout(margin=dict(l=0, r=0, b=0, t=0)) | |
col1.plotly_chart(fig1, use_container_width=True) | |
pressed = st.button('Run') | |
if pressed: | |
st.empty() | |
output = onnx_predict_lineage_population(np.array(input)) | |
scaled_output = scale_model_outputs(scaler_path="./scaler.gz", data=output) | |
for i in range(len(scaled_output[0])): | |
scaled_output[0][i]=int(round(scaled_output[0][i])) | |
df = pd.DataFrame({"Lineage":["A", "E", "M", "P", "C", "D", "Z"] , "Population": scaled_output[0]}) | |
col2.table(df) |