mennamostafa55555's picture
Update app.py
5520222
raw
history blame
2.04 kB
import supervision as sv
import gradio as gr
from ultralytics import YOLO
import sahi
sahi.utils.file.download_from_url(
"https://sources.roboflow.com/OgqzFyuvCufzBIgK0Xmv3jpRGi93/B9CczhKfPd4qodh00Yoc/thumb.jpg",
"tu1.jpg",
)
sahi.utils.file.download_from_url(
"https://sources.roboflow.com/OgqzFyuvCufzBIgK0Xmv3jpRGi93/oVL0QV12piawinjbsBz0/thumb.jpg",
"tu2.jpg",
)
sahi.utils.file.download_from_url(
"https://sources.roboflow.com/OgqzFyuvCufzBIgK0Xmv3jpRGi93/7ZglAQyhL9G1yWUM0z1p/thumb.jpg",
"tu3.jpg",
)
annotatorbbox = sv.BoxAnnotator()
annotatormask=sv.MaskAnnotator()
def yolov8_inference(
image: gr.inputs.Image = None,
model_name: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
model = YOLO("https://huggingface.co/spaces/devisionx/Amazon_demo/blob/main/amazon.pt")
results = model(image,conf=conf_threshold,iou=iou_threshold ,imgsz=1280)[0]
detections = sv.Detections.from_yolov8(results)
annotated_image = annotatorbbox.annotate(scene=image, detections=detections)
annotated_image = annotatormask.annotate(scene=annotated_image, detections=detections)
return annotated_image
image_input = gr.inputs.Image() # Adjust the shape according to your requirements
inputs = [
gr.inputs.Image(label="Input Image"),
gr.Slider(
minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"
),
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.Image(type="filepath", label="Output Image")
title = "Ultralytics YOLOv8 Segmentation Demo"
import os
examples = [
["tu1.jpg", 0.6, 0.45],
["tu2.jpg", 0.25, 0.45],
["tu3.jpg", 0.25, 0.45],
]
demo_app = gr.Interface(examples=examples,
fn=yolov8_inference,
inputs=inputs,
outputs=outputs,
title=title,
cache_examples=True,
theme="default",
)
demo_app.launch(debug=False, enable_queue=True)