Spaces:
Running
Running
import supervision as sv | |
import gradio as gr | |
from ultralytics import YOLO | |
import sahi | |
sahi.utils.file.download_from_url( | |
"https://sources.roboflow.com/OgqzFyuvCufzBIgK0Xmv3jpRGi93/B9CczhKfPd4qodh00Yoc/thumb.jpg", | |
"tu1.jpg", | |
) | |
sahi.utils.file.download_from_url( | |
"https://sources.roboflow.com/OgqzFyuvCufzBIgK0Xmv3jpRGi93/oVL0QV12piawinjbsBz0/thumb.jpg", | |
"tu2.jpg", | |
) | |
sahi.utils.file.download_from_url( | |
"https://sources.roboflow.com/OgqzFyuvCufzBIgK0Xmv3jpRGi93/7ZglAQyhL9G1yWUM0z1p/thumb.jpg", | |
"tu3.jpg", | |
) | |
annotatorbbox = sv.BoxAnnotator() | |
annotatormask=sv.MaskAnnotator() | |
def yolov8_inference( | |
image: gr.inputs.Image = None, | |
model_name: gr.inputs.Dropdown = None, | |
image_size: gr.inputs.Slider = 640, | |
conf_threshold: gr.inputs.Slider = 0.25, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
model = YOLO("https://huggingface.co/spaces/devisionx/Amazon_demo/blob/main/amazon.pt") | |
results = model(image,conf=conf_threshold,iou=iou_threshold ,imgsz=1280)[0] | |
detections = sv.Detections.from_yolov8(results) | |
annotated_image = annotatorbbox.annotate(scene=image, detections=detections) | |
annotated_image = annotatormask.annotate(scene=annotated_image, detections=detections) | |
return annotated_image | |
image_input = gr.inputs.Image() # Adjust the shape according to your requirements | |
inputs = [ | |
gr.inputs.Image(label="Input Image"), | |
gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold" | |
), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs = gr.Image(type="filepath", label="Output Image") | |
title = "Ultralytics YOLOv8 Segmentation Demo" | |
import os | |
examples = [ | |
["tu1.jpg", 0.6, 0.45], | |
["tu2.jpg", 0.25, 0.45], | |
["tu3.jpg", 0.25, 0.45], | |
] | |
demo_app = gr.Interface(examples=examples, | |
fn=yolov8_inference, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
cache_examples=True, | |
theme="default", | |
) | |
demo_app.launch(debug=False, enable_queue=True) |