|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
from transformers.utils import is_flash_attn_2_available |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
import torch |
|
import gradio as gr |
|
import time |
|
|
|
BATCH_SIZE = 16 |
|
MAX_AUDIO_MINS = 30 |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
use_flash_attention_2 = is_flash_attn_2_available() |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
"openai/whisper-large-v2", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2 |
|
) |
|
distilled_model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
"distil-whisper/distil-large-v2", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2 |
|
) |
|
|
|
if not use_flash_attention_2: |
|
|
|
model = model.to_bettertransformer() |
|
distilled_model = distilled_model.to_bettertransformer() |
|
|
|
processor = AutoProcessor.from_pretrained("openai/whisper-large-v2") |
|
|
|
model.to(device) |
|
distilled_model.to(device) |
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
max_new_tokens=128, |
|
chunk_length_s=30, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
generate_kwargs={"language": "en", "task": "transcribe"}, |
|
return_timestamps=True |
|
) |
|
pipe_forward = pipe._forward |
|
|
|
distil_pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=distilled_model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
max_new_tokens=128, |
|
chunk_length_s=15, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
generate_kwargs={"language": "en", "task": "transcribe"}, |
|
) |
|
distil_pipe_forward = distil_pipe._forward |
|
|
|
|
|
def transcribe(inputs): |
|
if inputs is None: |
|
raise gr.Error("No audio file submitted! Please record or upload an audio file before submitting your request.") |
|
|
|
with open(inputs, "rb") as f: |
|
inputs = f.read() |
|
|
|
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) |
|
audio_length_mins = len(inputs) / pipe.feature_extractor.sampling_rate / 60 |
|
|
|
if audio_length_mins > MAX_AUDIO_MINS: |
|
raise gr.Error( |
|
f"To ensure fair usage of the Space, the maximum audio length permitted is {MAX_AUDIO_MINS} minutes." |
|
f"Got an audio of length {round(audio_length_mins, 3)} minutes." |
|
) |
|
|
|
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} |
|
|
|
def _forward_distil_time(*args, **kwargs): |
|
global distil_runtime |
|
start_time = time.time() |
|
result = distil_pipe_forward(*args, **kwargs) |
|
distil_runtime = time.time() - start_time |
|
distil_runtime = round(distil_runtime, 2) |
|
return result |
|
|
|
distil_pipe._forward = _forward_distil_time |
|
distil_text = distil_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"] |
|
yield distil_text, distil_runtime, None, None, None |
|
|
|
def _forward_time(*args, **kwargs): |
|
global runtime |
|
start_time = time.time() |
|
result = pipe_forward(*args, **kwargs) |
|
runtime = time.time() - start_time |
|
runtime = round(runtime, 2) |
|
return result |
|
|
|
pipe._forward = _forward_time |
|
text = pipe(inputs, batch_size=BATCH_SIZE)["text"] |
|
|
|
yield distil_text, distil_runtime, text, runtime |
|
|
|
|
|
if __name__ == "__main__": |
|
with gr.Blocks() as demo: |
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; |
|
" |
|
> |
|
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> |
|
Whisper vs Distil-Whisper: Speed Comparison |
|
</h1> |
|
</div> |
|
</div> |
|
""" |
|
) |
|
gr.HTML( |
|
f""" |
|
<p><a href="https://huggingface.co/distil-whisper/distil-large-v2"> Distil-Whisper</a> is a distilled variant |
|
of the <a href="https://huggingface.co/openai/whisper-large-v2"> Whisper</a> model by OpenAI. Compared to Whisper, |
|
Distil-Whisper runs 6x faster with 50% fewer parameters, while performing to within 1% word error rate (WER) on |
|
out-of-distribution evaluation data.</p> |
|
|
|
<p>In this demo, we perform a speed comparison between Whisper and Distil-Whisper in order to test this claim. |
|
Both models use the <a href="https://huggingface.co/distil-whisper/distil-large-v2#long-form-transcription"> chunked long-form transcription algorithm</a> |
|
in 🤗 Transformers, as well as Flash Attention. To use Distil-Whisper yourself, check the code examples on the |
|
<a href="https://github.com/huggingface/distil-whisper#1-usage"> Distil-Whisper repository</a>. To ensure fair |
|
usage of the Space, we ask that audio file inputs are kept to < 30 mins.</p> |
|
""" |
|
) |
|
audio = gr.components.Audio(type="filepath", label="Audio input") |
|
button = gr.Button("Transcribe") |
|
with gr.Row(): |
|
distil_runtime = gr.components.Textbox(label="Distil-Whisper Transcription Time (s)") |
|
runtime = gr.components.Textbox(label="Whisper Transcription Time (s)") |
|
with gr.Row(): |
|
distil_transcription = gr.components.Textbox(label="Distil-Whisper Transcription", show_copy_button=True) |
|
transcription = gr.components.Textbox(label="Whisper Transcription", show_copy_button=True) |
|
button.click( |
|
fn=transcribe, |
|
inputs=audio, |
|
outputs=[distil_transcription, distil_runtime, transcription, runtime], |
|
) |
|
gr.Markdown("## Examples") |
|
gr.Examples( |
|
[["./assets/example_1.wav"], ["./assets/example_2.wav"]], |
|
audio, |
|
outputs=[distil_transcription, distil_runtime, transcription, runtime], |
|
fn=transcribe, |
|
cache_examples=False, |
|
) |
|
demo.queue(max_size=10).launch() |
|
|