Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,99 +1,13 @@
|
|
1 |
-
import spaces
|
2 |
-
import torch
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
-
from
|
7 |
-
from
|
8 |
-
|
9 |
-
import tempfile
|
10 |
-
import os
|
11 |
-
|
12 |
-
MODEL_NAME = "openai/whisper-large-v3"
|
13 |
-
BATCH_SIZE = 8
|
14 |
-
FILE_LIMIT_MB = 1000
|
15 |
-
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
16 |
-
|
17 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
18 |
-
|
19 |
-
pipe = pipeline(
|
20 |
-
task="automatic-speech-recognition",
|
21 |
-
model=MODEL_NAME,
|
22 |
-
chunk_length_s=30,
|
23 |
-
device=device,
|
24 |
-
)
|
25 |
-
|
26 |
-
|
27 |
-
@spaces.GPU
|
28 |
-
def transcribe(inputs, task):
|
29 |
-
if inputs is None:
|
30 |
-
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
-
|
32 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
33 |
-
return text
|
34 |
-
|
35 |
-
|
36 |
-
def _return_yt_html_embed(yt_url):
|
37 |
-
video_id = yt_url.split("?v=")[-1]
|
38 |
-
HTML_str = (
|
39 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
40 |
-
" </center>"
|
41 |
-
)
|
42 |
-
return HTML_str
|
43 |
-
|
44 |
-
def download_yt_audio(yt_url, filename):
|
45 |
-
info_loader = youtube_dl.YoutubeDL()
|
46 |
-
|
47 |
-
try:
|
48 |
-
info = info_loader.extract_info(yt_url, download=False)
|
49 |
-
except youtube_dl.utils.DownloadError as err:
|
50 |
-
raise gr.Error(str(err))
|
51 |
-
|
52 |
-
file_length = info["duration_string"]
|
53 |
-
file_h_m_s = file_length.split(":")
|
54 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
55 |
-
|
56 |
-
if len(file_h_m_s) == 1:
|
57 |
-
file_h_m_s.insert(0, 0)
|
58 |
-
if len(file_h_m_s) == 2:
|
59 |
-
file_h_m_s.insert(0, 0)
|
60 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
61 |
-
|
62 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
63 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
64 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
65 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
66 |
-
|
67 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
68 |
-
|
69 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
-
try:
|
71 |
-
ydl.download([yt_url])
|
72 |
-
except youtube_dl.utils.ExtractorError as err:
|
73 |
-
raise gr.Error(str(err))
|
74 |
-
|
75 |
-
@spaces.GPU
|
76 |
-
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
77 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
-
|
79 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
81 |
-
download_yt_audio(yt_url, filepath)
|
82 |
-
with open(filepath, "rb") as f:
|
83 |
-
inputs = f.read()
|
84 |
-
|
85 |
-
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
87 |
-
|
88 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
89 |
-
|
90 |
-
return html_embed_str, text
|
91 |
-
|
92 |
|
93 |
demo = gr.Blocks()
|
94 |
|
95 |
mf_transcribe = gr.Interface(
|
96 |
-
fn=transcribe,
|
97 |
inputs=[
|
98 |
gr.Audio(sources="microphone", type="filepath"),
|
99 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
@@ -109,7 +23,7 @@ mf_transcribe = gr.Interface(
|
|
109 |
)
|
110 |
|
111 |
file_transcribe = gr.Interface(
|
112 |
-
fn=transcribe,
|
113 |
inputs=[
|
114 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
115 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
@@ -124,8 +38,8 @@ file_transcribe = gr.Interface(
|
|
124 |
allow_flagging="never",
|
125 |
)
|
126 |
|
127 |
-
|
128 |
-
fn=yt_transcribe,
|
129 |
inputs=[
|
130 |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
131 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
@@ -141,7 +55,6 @@ yt_transcribe = gr.Interface(
|
|
141 |
)
|
142 |
|
143 |
with demo:
|
144 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe,
|
145 |
-
|
146 |
-
demo.queue().launch()
|
147 |
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from utils import MODEL_NAME
|
4 |
+
from transcribe import transcribe
|
5 |
+
from youtube import yt_transcribe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
demo = gr.Blocks()
|
8 |
|
9 |
mf_transcribe = gr.Interface(
|
10 |
+
fn=spaces.GPU(transcribe),
|
11 |
inputs=[
|
12 |
gr.Audio(sources="microphone", type="filepath"),
|
13 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
|
|
23 |
)
|
24 |
|
25 |
file_transcribe = gr.Interface(
|
26 |
+
fn=spaces.GPU(transcribe),
|
27 |
inputs=[
|
28 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
29 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
|
|
38 |
allow_flagging="never",
|
39 |
)
|
40 |
|
41 |
+
yt_transcribe_interface = gr.Interface(
|
42 |
+
fn=spaces.GPU(yt_transcribe),
|
43 |
inputs=[
|
44 |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
45 |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
|
|
55 |
)
|
56 |
|
57 |
with demo:
|
58 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe_interface], ["Microphone", "Audio file", "YouTube"])
|
|
|
|
|
59 |
|
60 |
+
demo.queue().launch()
|