Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import fitz # PyMuPDF
|
6 |
+
import pandas as pd
|
7 |
+
import io
|
8 |
+
|
9 |
+
# Load the model and tokenizer from Hugging Face
|
10 |
+
model_name = "KevSun/Engessay_grading_ML"
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Streamlit app
|
15 |
+
st.title("Automated Scoring App")
|
16 |
+
st.write("Enter your English essay below to predict scores from multiple dimensions:")
|
17 |
+
|
18 |
+
# Replace text input with file uploader
|
19 |
+
uploaded_file = st.file_uploader("Upload your PDF essay:", type=['pdf'])
|
20 |
+
|
21 |
+
if uploaded_file:
|
22 |
+
# Convert uploaded file to bytes for fitz
|
23 |
+
pdf_bytes = uploaded_file.read()
|
24 |
+
|
25 |
+
# Read and display PDF content
|
26 |
+
with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
|
27 |
+
text_content = ""
|
28 |
+
for page in doc:
|
29 |
+
text_content += page.get_text()
|
30 |
+
|
31 |
+
# Display the extracted text
|
32 |
+
st.write("Extracted text from PDF:")
|
33 |
+
st.text_area("PDF Content", text_content, height=200, disabled=True)
|
34 |
+
|
35 |
+
if st.button("Predict"):
|
36 |
+
if uploaded_file:
|
37 |
+
# Use the already extracted text_content for prediction
|
38 |
+
# Tokenize input text with truncation
|
39 |
+
inputs = tokenizer(
|
40 |
+
text_content,
|
41 |
+
return_tensors="pt",
|
42 |
+
truncation=True,
|
43 |
+
max_length=512 # Standard BERT/RoBERTa max length
|
44 |
+
)
|
45 |
+
|
46 |
+
# After tokenization
|
47 |
+
token_count = len(inputs['input_ids'][0])
|
48 |
+
if token_count == 512:
|
49 |
+
st.warning("⚠️ The text was too long and has been truncated to fit the model's maximum length. This might affect the accuracy of the predictions.")
|
50 |
+
|
51 |
+
# Get predictions from the model
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model(**inputs)
|
54 |
+
|
55 |
+
# Extract and process predictions
|
56 |
+
predictions = outputs.logits.squeeze()
|
57 |
+
predicted_scores = predictions.numpy()
|
58 |
+
|
59 |
+
# Scale the predictions
|
60 |
+
scaled_scores = 2.25 * predicted_scores - 1.25
|
61 |
+
rounded_scores = [round(score * 2) / 2 for score in scaled_scores]
|
62 |
+
|
63 |
+
# Create results DataFrame
|
64 |
+
labels = ["cohesion", "syntax", "vocabulary", "phraseology", "grammar", "conventions"]
|
65 |
+
results_dict = {
|
66 |
+
'Dimension': labels,
|
67 |
+
'Score': rounded_scores
|
68 |
+
}
|
69 |
+
df = pd.DataFrame(results_dict)
|
70 |
+
|
71 |
+
# Display results in app
|
72 |
+
st.write("Scores:")
|
73 |
+
st.dataframe(df)
|
74 |
+
|
75 |
+
# Save CSV locally
|
76 |
+
local_path = "essay_scores.csv"
|
77 |
+
df.to_csv(local_path, index=False)
|
78 |
+
st.success(f"Results saved locally to {local_path}")
|
79 |
+
|
80 |
+
# Create download button for CSV
|
81 |
+
csv = df.to_csv(index=False)
|
82 |
+
st.download_button(
|
83 |
+
label="Download results as CSV",
|
84 |
+
data=csv,
|
85 |
+
file_name="essay_scores.csv",
|
86 |
+
mime="text/csv"
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
st.write("Please upload a PDF file to get scores.")
|