Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,101 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
import torch
|
4 |
from groq import Groq
|
5 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
6 |
-
|
7 |
-
# β
Ensure set_page_config() is the first Streamlit command
|
8 |
-
st.set_page_config(page_title="AI Study Assistant", page_icon="π€", layout="wide")
|
9 |
|
10 |
# Set up the Groq API Key
|
11 |
-
GROQ_API_KEY = "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"
|
12 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
13 |
|
14 |
# Initialize the Groq client
|
15 |
client = Groq(api_key=GROQ_API_KEY)
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
import accelerate # noqa: F401
|
20 |
-
except ImportError:
|
21 |
-
st.error("β οΈ `accelerate` library is required. Install it with: `pip install accelerate`")
|
22 |
-
|
23 |
-
# β
Initialize Hugging Face DeepSeek R1 model correctly
|
24 |
-
MODEL_NAME = "deepseek-ai/DeepSeek-R1"
|
25 |
-
|
26 |
-
try:
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
28 |
-
|
29 |
-
model = AutoModelForCausalLM.from_pretrained(
|
30 |
-
MODEL_NAME,
|
31 |
-
trust_remote_code=True,
|
32 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, # β
Use FP16 on GPU, FP32 on CPU
|
33 |
-
device_map="auto" if torch.cuda.is_available() else None, # β
Enable auto GPU usage
|
34 |
-
quantization_config=None # β
Disable unsupported FP8 quantization
|
35 |
-
)
|
36 |
-
|
37 |
-
def generate_response_hf(user_message):
|
38 |
-
inputs = tokenizer(user_message, return_tensors="pt").to(model.device)
|
39 |
-
outputs = model.generate(**inputs, max_length=200)
|
40 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
-
|
42 |
-
except Exception as e:
|
43 |
-
st.error(f"β Error loading DeepSeek-R1: {str(e)}")
|
44 |
-
generate_response_hf = lambda x: "β οΈ Error: Model not loaded."
|
45 |
-
|
46 |
-
# Streamlit UI setup
|
47 |
st.title("π Subject-specific AI Chatbot")
|
48 |
st.write("Hello! I'm your AI Study Assistant. You can ask me any questions related to your subjects, and I'll try to help.")
|
49 |
|
50 |
-
#
|
51 |
st.sidebar.header("βοΈ Settings")
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
if 'conversation_history' not in st.session_state:
|
56 |
st.session_state.conversation_history = []
|
57 |
|
58 |
-
#
|
59 |
subjects = ["Chemistry", "Computer", "English", "Islamiat", "Mathematics", "Physics", "Urdu"]
|
60 |
|
|
|
61 |
def generate_chatbot_response(user_message):
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
|
|
|
64 |
if "kisne banaya" in user_message.lower() or "who created you" in user_message.lower():
|
65 |
-
return "I
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
if chat_model == "Groq API":
|
70 |
-
chat_completion = client.chat.completions.create(
|
71 |
-
messages=[{"role": "user", "content": prompt}],
|
72 |
-
model="deepseek-chat"
|
73 |
-
)
|
74 |
-
return chat_completion.choices[0].message.content
|
75 |
else:
|
76 |
-
|
77 |
|
78 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
st.markdown("### π¬ Chat with me")
|
80 |
user_input = st.chat_input("Ask me a subject-related question:")
|
81 |
|
|
|
82 |
if user_input:
|
83 |
chatbot_response = generate_chatbot_response(user_input)
|
|
|
|
|
84 |
st.session_state.conversation_history.append(("User: " + user_input, "Chatbot: " + chatbot_response))
|
85 |
|
86 |
# Display chat history
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
from groq import Groq
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Set up the Groq API Key
|
6 |
+
GROQ_API_KEY = "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"
|
7 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
8 |
|
9 |
# Initialize the Groq client
|
10 |
client = Groq(api_key=GROQ_API_KEY)
|
11 |
|
12 |
+
# Streamlit user interface setup
|
13 |
+
st.set_page_config(page_title="AI Study Assistant", page_icon="π€", layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
st.title("π Subject-specific AI Chatbot")
|
15 |
st.write("Hello! I'm your AI Study Assistant. You can ask me any questions related to your subjects, and I'll try to help.")
|
16 |
|
17 |
+
# Add sidebar with styling options
|
18 |
st.sidebar.header("βοΈ Settings")
|
19 |
+
st.sidebar.write("Customize your chatbot experience!")
|
20 |
+
chat_theme = st.sidebar.radio("Choose a theme:", ["Light", "Dark", "Blue", "Green"])
|
21 |
+
|
22 |
+
# Apply theme
|
23 |
+
if chat_theme == "Dark":
|
24 |
+
st.markdown("""
|
25 |
+
<style>
|
26 |
+
body {background-color: #1e1e1e; color: white;}
|
27 |
+
.stButton>button {background-color: #4CAF50; color: white;}
|
28 |
+
.chat-bubble {background-color: #2c2c2c; border-radius: 10px; padding: 10px;}
|
29 |
+
</style>
|
30 |
+
""", unsafe_allow_html=True)
|
31 |
+
elif chat_theme == "Blue":
|
32 |
+
st.markdown("""
|
33 |
+
<style>
|
34 |
+
body {background-color: #e3f2fd; color: black;}
|
35 |
+
.stButton>button {background-color: #2196F3; color: white;}
|
36 |
+
.chat-bubble {background-color: #bbdefb; border-radius: 10px; padding: 10px;}
|
37 |
+
</style>
|
38 |
+
""", unsafe_allow_html=True)
|
39 |
+
elif chat_theme == "Green":
|
40 |
+
st.markdown("""
|
41 |
+
<style>
|
42 |
+
body {background-color: #e8f5e9; color: black;}
|
43 |
+
.stButton>button {background-color: #4CAF50; color: white;}
|
44 |
+
.chat-bubble {background-color: #c8e6c9; border-radius: 10px; padding: 10px;}
|
45 |
+
</style>
|
46 |
+
""", unsafe_allow_html=True)
|
47 |
+
else:
|
48 |
+
st.markdown("""
|
49 |
+
<style>
|
50 |
+
body {background-color: #ffffff; color: black;}
|
51 |
+
.stButton>button {background-color: #008CBA; color: white;}
|
52 |
+
.chat-bubble {background-color: #f1f1f1; border-radius: 10px; padding: 10px;}
|
53 |
+
</style>
|
54 |
+
""", unsafe_allow_html=True)
|
55 |
+
|
56 |
+
# Initialize session state for maintaining conversation
|
57 |
if 'conversation_history' not in st.session_state:
|
58 |
st.session_state.conversation_history = []
|
59 |
|
60 |
+
# Define a list of subjects for which the chatbot will answer
|
61 |
subjects = ["Chemistry", "Computer", "English", "Islamiat", "Mathematics", "Physics", "Urdu"]
|
62 |
|
63 |
+
# Function to generate chatbot response based on subject-specific user input
|
64 |
def generate_chatbot_response(user_message):
|
65 |
+
# Check if the user's question is related to any subject
|
66 |
+
related_subject = None
|
67 |
+
for subject in subjects:
|
68 |
+
if subject.lower() in user_message.lower():
|
69 |
+
related_subject = subject
|
70 |
+
break
|
71 |
|
72 |
+
# Custom response for "who created you" type of questions
|
73 |
if "kisne banaya" in user_message.lower() or "who created you" in user_message.lower():
|
74 |
+
return "I Created by Abdul Basit π"
|
75 |
|
76 |
+
if related_subject:
|
77 |
+
prompt = f"You are a helpful AI chatbot for studying {related_subject}. The user is asking: {user_message}. Provide a detailed, helpful response related to {related_subject}."
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
else:
|
79 |
+
prompt = f"You are a helpful AI chatbot. The user is asking: {user_message}. If the question is not related to any of the specified subjects (Chemistry, Computer, English, Islamiat, Mathematics, Physics, Urdu), politely let them know."
|
80 |
|
81 |
+
# Generate response using Groq API
|
82 |
+
chat_completion = client.chat.completions.create(
|
83 |
+
messages=[{"role": "user", "content": prompt}],
|
84 |
+
model="llama3-8b-8192", # You can replace with the appropriate model name
|
85 |
+
)
|
86 |
+
|
87 |
+
response = chat_completion.choices[0].message.content
|
88 |
+
return response
|
89 |
+
|
90 |
+
# User input for conversation (now placed at the bottom)
|
91 |
st.markdown("### π¬ Chat with me")
|
92 |
user_input = st.chat_input("Ask me a subject-related question:")
|
93 |
|
94 |
+
# Handle user input and display conversation
|
95 |
if user_input:
|
96 |
chatbot_response = generate_chatbot_response(user_input)
|
97 |
+
|
98 |
+
# Save the conversation history
|
99 |
st.session_state.conversation_history.append(("User: " + user_input, "Chatbot: " + chatbot_response))
|
100 |
|
101 |
# Display chat history
|