Update app.py
Browse files
app.py
CHANGED
|
@@ -1,163 +1,29 @@
|
|
| 1 |
-
import os
|
| 2 |
-
os.system("pip freeze")
|
| 3 |
-
import spaces
|
| 4 |
-
|
| 5 |
import gradio as gr
|
| 6 |
-
import torch as torch
|
| 7 |
from diffusers import MarigoldDepthPipeline, DDIMScheduler
|
| 8 |
-
|
| 9 |
-
from huggingface_hub import login
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
CHECKPOINT = "developy/ApDepth"
|
| 13 |
|
| 14 |
-
if "HF_TOKEN_LOGIN" in os.environ:
|
| 15 |
-
login(token=os.environ["HF_TOKEN_LOGIN"])
|
| 16 |
-
|
| 17 |
device = "cpu"
|
| 18 |
-
dtype = torch.
|
| 19 |
|
| 20 |
pipe = MarigoldDepthPipeline.from_pretrained(CHECKPOINT)
|
| 21 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 22 |
pipe = pipe.to(device=device, dtype=dtype)
|
| 23 |
-
try:
|
| 24 |
-
import xformers
|
| 25 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 26 |
-
except:
|
| 27 |
-
pass
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
class MarigoldDepthApp(DualVisionApp):
|
| 31 |
-
DEFAULT_SEED = 2024
|
| 32 |
-
DEFAULT_ENSEMBLE_SIZE = 1
|
| 33 |
-
DEFAULT_DENOISE_STEPS = 1
|
| 34 |
-
DEFAULT_PROCESSING_RES = 768
|
| 35 |
-
|
| 36 |
-
def make_header(self):
|
| 37 |
-
gr.Markdown(
|
| 38 |
-
"""
|
| 39 |
-
<h2><a href="https://huggingface.co/spaces/prs-eth/marigold" style="color: black;">Marigold Depth Estimation</a></h2>
|
| 40 |
-
"""
|
| 41 |
-
)
|
| 42 |
-
with gr.Row(elem_classes="remove-elements"):
|
| 43 |
-
gr.Markdown(
|
| 44 |
-
f"""
|
| 45 |
-
<p align="center">
|
| 46 |
-
<a title="Website" href="https://marigoldcomputervision.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 47 |
-
<img src="https://img.shields.io/badge/%E2%99%A5%20Project%20-Website-blue">
|
| 48 |
-
</a>
|
| 49 |
-
<a title="diffusers" href="https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 50 |
-
<img src="https://img.shields.io/badge/%F0%9F%A7%A8%20Read_diffusers-Tutorial-yellow?labelColor=green">
|
| 51 |
-
</a>
|
| 52 |
-
<a title="arXiv" href="https://arxiv.org/abs/2505.09358" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 53 |
-
<img src="https://img.shields.io/badge/%F0%9F%93%84%20Read%20-Paper-AF3436">
|
| 54 |
-
</a>
|
| 55 |
-
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 56 |
-
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
|
| 57 |
-
</a>
|
| 58 |
-
<a title="Image Normals" href="https://huggingface.co/spaces/prs-eth/marigold-normals" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 59 |
-
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Image%20Normals%20-Demo-yellow" alt="imagedepth">
|
| 60 |
-
</a>
|
| 61 |
-
<a title="Image Intrinsics" href="https://huggingface.co/spaces/prs-eth/marigold-iid" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 62 |
-
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Image%20Intrinsics%20-Demo-yellow" alt="imagedepth">
|
| 63 |
-
</a>
|
| 64 |
-
<a title="LiDAR Depth" href="https://huggingface.co/spaces/prs-eth/marigold-dc" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 65 |
-
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20LiDAR%20Depth%20-Demo-yellow" alt="imagedepth">
|
| 66 |
-
</a>
|
| 67 |
-
<a title="Video Depth" href="https://huggingface.co/spaces/prs-eth/rollingdepth" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 68 |
-
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Video%20Depth%20-Demo-yellow" alt="videodepth">
|
| 69 |
-
</a>
|
| 70 |
-
<a title="Depth-to-3D" href="https://huggingface.co/spaces/prs-eth/depth-to-3d-print" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 71 |
-
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Depth--to--3D%20-Demo-yellow" alt="depthto3d">
|
| 72 |
-
</a>
|
| 73 |
-
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
| 74 |
-
<img src="https://shields.io/twitter/follow/:?label=Subscribe%20for%20updates!" alt="social">
|
| 75 |
-
</a>
|
| 76 |
-
</p>
|
| 77 |
-
<p align="center" style="margin-top: 0px;">
|
| 78 |
-
Upload a photo or select an example below to compute depth maps in real time.
|
| 79 |
-
Use the slider to reveal areas of interest.
|
| 80 |
-
Use the radio-buttons to switch between modalities.
|
| 81 |
-
Check our other demo badges above for new or relocated functionality.
|
| 82 |
-
</p>
|
| 83 |
-
"""
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
def build_user_components(self):
|
| 87 |
-
with gr.Column():
|
| 88 |
-
ensemble_size = gr.Slider(
|
| 89 |
-
label="Ensemble size",
|
| 90 |
-
minimum=1,
|
| 91 |
-
maximum=10,
|
| 92 |
-
step=1,
|
| 93 |
-
value=self.DEFAULT_ENSEMBLE_SIZE,
|
| 94 |
-
)
|
| 95 |
-
denoise_steps = gr.Slider(
|
| 96 |
-
label="Number of denoising steps",
|
| 97 |
-
minimum=1,
|
| 98 |
-
maximum=20,
|
| 99 |
-
step=1,
|
| 100 |
-
value=self.DEFAULT_DENOISE_STEPS,
|
| 101 |
-
)
|
| 102 |
-
processing_res = gr.Radio(
|
| 103 |
-
[
|
| 104 |
-
("Native", 0),
|
| 105 |
-
("Recommended", 768),
|
| 106 |
-
],
|
| 107 |
-
label="Processing resolution",
|
| 108 |
-
value=self.DEFAULT_PROCESSING_RES,
|
| 109 |
-
)
|
| 110 |
-
return {
|
| 111 |
-
"ensemble_size": ensemble_size,
|
| 112 |
-
"denoise_steps": denoise_steps,
|
| 113 |
-
"processing_res": processing_res,
|
| 114 |
-
}
|
| 115 |
-
|
| 116 |
-
def process(self, image_in: Image.Image, **kwargs):
|
| 117 |
-
ensemble_size = kwargs.get("ensemble_size", self.DEFAULT_ENSEMBLE_SIZE)
|
| 118 |
-
denoise_steps = kwargs.get("denoise_steps", self.DEFAULT_DENOISE_STEPS)
|
| 119 |
-
processing_res = kwargs.get("processing_res", self.DEFAULT_PROCESSING_RES)
|
| 120 |
-
generator = torch.Generator(device=device).manual_seed(self.DEFAULT_SEED)
|
| 121 |
-
|
| 122 |
-
pipe_out = pipe(
|
| 123 |
-
image_in,
|
| 124 |
-
ensemble_size=ensemble_size,
|
| 125 |
-
num_inference_steps=denoise_steps,
|
| 126 |
-
processing_resolution=processing_res,
|
| 127 |
-
batch_size=1 if processing_res == 0 else 2,
|
| 128 |
-
output_uncertainty=ensemble_size >= 3,
|
| 129 |
-
generator=generator,
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
depth_vis = pipe.image_processor.visualize_depth(pipe_out.prediction)[0]
|
| 133 |
-
depth_16bit = pipe.image_processor.export_depth_to_16bit_png(pipe_out.prediction)[0]
|
| 134 |
-
|
| 135 |
-
out_modalities = {
|
| 136 |
-
"Depth Visualization": depth_vis,
|
| 137 |
-
"Depth 16-bit": depth_16bit,
|
| 138 |
-
}
|
| 139 |
-
if ensemble_size >= 3:
|
| 140 |
-
uncertainty = pipe.image_processor.visualize_uncertainty(pipe_out.uncertainty)[0]
|
| 141 |
-
out_modalities["Uncertainty"] = uncertainty
|
| 142 |
-
|
| 143 |
-
out_settings = {
|
| 144 |
-
"ensemble_size": ensemble_size,
|
| 145 |
-
"denoise_steps": denoise_steps,
|
| 146 |
-
"processing_res": processing_res,
|
| 147 |
-
}
|
| 148 |
-
return out_modalities, out_settings
|
| 149 |
-
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from diffusers import MarigoldDepthPipeline, DDIMScheduler
|
| 3 |
+
import torch
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
|
| 6 |
CHECKPOINT = "developy/ApDepth"
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
device = "cpu"
|
| 9 |
+
dtype = torch.float32
|
| 10 |
|
| 11 |
pipe = MarigoldDepthPipeline.from_pretrained(CHECKPOINT)
|
| 12 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 13 |
pipe = pipe.to(device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
def predict(image: Image.Image):
|
| 16 |
+
out = pipe(image)
|
| 17 |
+
depth_vis = pipe.image_processor.visualize_depth(out.prediction)[0]
|
| 18 |
+
return depth_vis
|
| 19 |
+
|
| 20 |
+
demo = gr.Interface(
|
| 21 |
+
fn=predict,
|
| 22 |
+
inputs=gr.Image(type="pil", label="Input Image"),
|
| 23 |
+
outputs=gr.Image(type="pil", label="Depth Map"),
|
| 24 |
+
title="ApDepth Demo",
|
| 25 |
+
description="Monocular Depth Estimation based on Marigold"
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
demo.launch()
|