Jeremy Live
updated the chatbot history
332a246
raw
history blame
24.2 kB
import os
import sys
import gradio as gr
import json
from typing import List, Dict, Any, Optional, Tuple
import logging
try:
# Intentar importar dependencias opcionales
from langchain_community.agent_toolkits import create_sql_agent
from langchain_community.utilities import SQLDatabase
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.agents.agent_types import AgentType
import pymysql
from dotenv import load_dotenv
DEPENDENCIES_AVAILABLE = True
except ImportError:
# Si faltan dependencias, la aplicación funcionará en modo demo
DEPENDENCIES_AVAILABLE = False
# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_environment():
"""Verifica si el entorno está configurado correctamente."""
if not DEPENDENCIES_AVAILABLE:
return False, "Missing required Python packages. Please install them with: pip install -r requirements.txt"
# Verificar si estamos en un entorno con variables de entorno
required_vars = ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
missing_vars = [var for var in required_vars if not os.getenv(var)]
if missing_vars:
return False, f"Missing required environment variables: {', '.join(missing_vars)}"
return True, "Environment is properly configured"
def setup_database_connection():
"""Intenta establecer una conexión a la base de datos."""
if not DEPENDENCIES_AVAILABLE:
return None, "Dependencies not available"
try:
load_dotenv(override=True)
# Debug: Log all environment variables (without sensitive values)
logger.info("Environment variables:")
for key, value in os.environ.items():
if any(s in key.lower() for s in ['pass', 'key', 'secret']):
logger.info(f" {key}: {'*' * 8} (hidden for security)")
else:
logger.info(f" {key}: {value}")
db_user = os.getenv("DB_USER")
db_password = os.getenv("DB_PASSWORD")
db_host = os.getenv("DB_HOST")
db_name = os.getenv("DB_NAME")
# Debug: Log database connection info (without password)
logger.info(f"Database connection attempt - Host: {db_host}, User: {db_user}, DB: {db_name}")
if not all([db_user, db_password, db_host, db_name]):
missing = [var for var, val in [
("DB_USER", db_user),
("DB_PASSWORD", "*" if db_password else ""),
("DB_HOST", db_host),
("DB_NAME", db_name)
] if not val]
logger.error(f"Missing required database configuration: {', '.join(missing)}")
return None, f"Missing database configuration: {', '.join(missing)}"
if not all([db_user, db_password, db_host, db_name]):
return None, "Missing database configuration"
logger.info(f"Connecting to database: {db_user}@{db_host}/{db_name}")
# Probar conexión
connection = pymysql.connect(
host=db_host,
user=db_user,
password=db_password,
database=db_name,
connect_timeout=5,
cursorclass=pymysql.cursors.DictCursor
)
connection.close()
# Si la conexión es exitosa, crear motor SQLAlchemy
db_uri = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}"
logger.info("Database connection successful")
return SQLDatabase.from_uri(db_uri), ""
except Exception as e:
error_msg = f"Error connecting to database: {str(e)}"
logger.error(error_msg)
return None, error_msg
def initialize_llm():
"""Inicializa el modelo de lenguaje."""
if not DEPENDENCIES_AVAILABLE:
error_msg = "Dependencies not available. Make sure all required packages are installed."
logger.error(error_msg)
return None, error_msg
google_api_key = os.getenv("GOOGLE_API_KEY")
logger.info(f"GOOGLE_API_KEY found: {'Yes' if google_api_key else 'No'}")
if not google_api_key:
error_msg = "GOOGLE_API_KEY not found in environment variables. Please check your Hugging Face Space secrets."
logger.error(error_msg)
return None, error_msg
try:
logger.info("Initializing Google Generative AI...")
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0,
google_api_key=google_api_key
)
# Test the model with a simple prompt
test_prompt = "Hello, this is a test."
logger.info(f"Testing model with prompt: {test_prompt}")
test_response = llm.invoke(test_prompt)
logger.info(f"Model test response: {str(test_response)[:100]}...") # Log first 100 chars
logger.info("Google Generative AI initialized successfully")
return llm, ""
except Exception as e:
error_msg = f"Error initializing Google Generative AI: {str(e)}"
logger.error(error_msg, exc_info=True) # Include full stack trace
return None, error_msg
def create_agent():
"""Crea el agente SQL si es posible."""
if not DEPENDENCIES_AVAILABLE:
error_msg = "Dependencies not available. Please check if all required packages are installed."
logger.error(error_msg)
return None, error_msg
logger.info("Starting agent creation process...")
# Step 1: Set up database connection
logger.info("Setting up database connection...")
db, db_error = setup_database_connection()
if not db:
error_msg = f"Failed to connect to database: {db_error}"
logger.error(error_msg)
else:
logger.info("Database connection successful")
# Step 2: Initialize LLM
logger.info("Initializing language model...")
llm, llm_error = initialize_llm()
if not llm:
error_msg = f"Failed to initialize language model: {llm_error}"
logger.error(error_msg)
else:
logger.info("Language model initialized successfully")
# Check if both components are available
if not db or not llm:
error_msg = f"Cannot create agent. {db_error if not db else ''} {llm_error if not llm else ''}"
logger.error(error_msg)
return None, error_msg
# Step 3: Create SQL agent
try:
logger.info("Creating SQL agent...")
agent = create_sql_agent(
llm=llm,
db=db,
agent_type=AgentType.OPENAI_FUNCTIONS,
verbose=True
)
# Test the agent with a simple query
try:
logger.info("Testing agent with a simple query...")
test_result = agent.invoke({"input": "What tables are available?"})
logger.info(f"Agent test response: {str(test_result)[:200]}...") # Log first 200 chars
except Exception as test_error:
logger.warning(f"Agent test query failed (this might be expected): {str(test_error)}")
logger.info("SQL agent created and tested successfully")
return agent, ""
except Exception as e:
error_msg = f"Error creating SQL agent: {str(e)}"
logger.error(error_msg, exc_info=True) # Include full stack trace
return None, error_msg
# Inicializar el agente
logger.info("="*50)
logger.info("Starting application initialization...")
logger.info(f"Python version: {sys.version}")
logger.info(f"Current working directory: {os.getcwd()}")
logger.info(f"Files in working directory: {os.listdir('.')}")
# Check environment variables
logger.info("Checking environment variables...")
required_vars = ["DB_USER", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
for var in required_vars:
logger.info(f"{var}: {'*' * 8 if os.getenv(var) else 'NOT SET'}")
# Initialize agent
logger.info("Initializing agent...")
agent, agent_error = create_agent()
db_connected = agent is not None
if agent:
logger.info("Agent initialized successfully")
else:
logger.error(f"Failed to initialize agent: {agent_error}")
logger.info("="*50)
def extract_sql_query(text):
"""Extrae consultas SQL del texto usando expresiones regulares."""
if not text:
return None
# Buscar código SQL entre backticks
sql_match = re.search(r'```(?:sql)?\s*(.*?)```', text, re.DOTALL)
if sql_match:
return sql_match.group(1).strip()
# Si no hay backticks, buscar una consulta SQL simple
sql_match = re.search(r'(SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE).*?;', text, re.IGNORECASE | re.DOTALL)
if sql_match:
return sql_match.group(0).strip()
return None
def execute_sql_query(query, db_connection):
"""Ejecuta una consulta SQL y devuelve los resultados como una cadena."""
if not db_connection:
return "Error: No hay conexión a la base de datos"
try:
with db_connection._engine.connect() as connection:
result = connection.execute(query)
rows = result.fetchall()
# Convertir los resultados a un formato legible
if not rows:
return "La consulta no devolvió resultados"
# Si es un solo resultado, devolverlo directamente
if len(rows) == 1 and len(rows[0]) == 1:
return str(rows[0][0])
# Si hay múltiples filas, formatear como tabla
try:
import pandas as pd
df = pd.DataFrame(rows)
return df.to_markdown(index=False)
except ImportError:
# Si pandas no está disponible, usar formato simple
return "\n".join([str(row) for row in rows])
except Exception as e:
return f"Error ejecutando la consulta: {str(e)}"
def generate_plot(data, x_col, y_col, title, x_label, y_label):
"""Generate a plot from data and return the file path."""
plt.figure(figsize=(10, 6))
plt.bar(data[x_col], data[y_col])
plt.title(title)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.xticks(rotation=45)
plt.tight_layout()
# Save to a temporary file
temp_dir = tempfile.mkdtemp()
plot_path = os.path.join(temp_dir, "plot.png")
plt.savefig(plot_path)
plt.close()
return plot_path
def convert_to_messages_format(chat_history):
"""Convert chat history to the format expected by Gradio 5.x"""
if not chat_history:
return []
messages = []
# If the first element is a list, assume it's in the old format
if isinstance(chat_history[0], list):
for msg in chat_history:
if isinstance(msg, list) and len(msg) == 2:
# Format: [user_msg, bot_msg]
user_msg, bot_msg = msg
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
else:
# Assume it's already in the correct format or can be used as is
for msg in chat_history:
if isinstance(msg, dict) and "role" in msg and "content" in msg:
messages.append(msg)
elif isinstance(msg, str):
# If it's a string, assume it's a user message
messages.append({"role": "user", "content": msg})
return messages
async def stream_agent_response(question: str, chat_history: List) -> tuple:
"""Procesa la pregunta del usuario y devuelve la respuesta del agente."""
# Initialize response
response_text = ""
messages = []
# Add previous chat history
if chat_history:
messages.extend(chat_history)
# Add user's question
messages.append({"role": "user", "content": question})
if not agent:
error_msg = (
"## ⚠️ Error: Agente no inicializado\n\n"
"No se pudo inicializar el agente de base de datos. Por favor, verifica que:\n"
"1. Todas las variables de entorno estén configuradas correctamente\n"
"2. La base de datos esté accesible\n"
f"3. El modelo de lenguaje esté disponible\n\n"
f"Error: {agent_error}"
)
messages.append({"role": "assistant", "content": error_msg})
yield messages
return
try:
# Execute the agent
response = await agent.ainvoke({"input": question, "chat_history": chat_history})
# Process the response
if hasattr(response, 'output'):
response_text = response.output
# Check if the response contains an SQL query
sql_query = extract_sql_query(response_text)
if sql_query:
# Execute the query and update the response
db_connection, _ = setup_database_connection()
if db_connection:
query_result = execute_sql_query(sql_query, db_connection)
response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}"
else:
response_text += "\n\n⚠️ No se pudo conectar a la base de datos para ejecutar la consulta."
else:
response_text = "Error: No se recibió respuesta del agente."
# Add assistant's response to the chat history
messages.append({"role": "assistant", "content": response_text})
# Yield the updated messages
yield messages
except Exception as e:
error_msg = f"## ❌ Error\n\nOcurrió un error al procesar tu solicitud:\n\n```\n{str(e)}\n```"
messages.append({"role": "assistant", "content": error_msg})
yield messages
# Custom CSS for the app
custom_css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
}
#chatbot {
min-height: 500px;
border: 1px solid #e0e0e0;
border-radius: 8px;
margin-bottom: 20px;
padding: 20px;
background-color: #f9f9f9;
}
.user-message, .bot-message {
padding: 12px 16px;
border-radius: 18px;
margin: 8px 0;
max-width: 80%;
line-height: 1.5;
}
.user-message {
background-color: #007bff;
color: white;
margin-left: auto;
border-bottom-right-radius: 4px;
}
.bot-message {
background-color: #f1f1f1;
color: #333;
margin-right: auto;
border-bottom-left-radius: 4px;
}
#question-input textarea {
min-height: 50px !important;
border-radius: 8px !important;
padding: 12px !important;
font-size: 16px !important;
}
#send-button {
height: 100%;
background-color: #007bff !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
font-weight: 500 !important;
transition: background-color 0.2s !important;
}
#send-button:hover {
background-color: #0056b3 !important;
}
.status-message {
text-align: center;
color: #666;
font-style: italic;
margin: 10px 0;
}
"""
def create_ui():
"""Crea y devuelve los componentes de la interfaz de usuario de Gradio."""
# Verificar el estado del entorno
env_ok, env_message = check_environment()
# Crear el tema personalizado
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate"
)
with gr.Blocks(
css=custom_css,
title="Asistente de Base de Datos SQL",
theme=theme
) as demo:
# Encabezado
gr.Markdown("""
# 🤖 Asistente de Base de Datos SQL
Haz preguntas en lenguaje natural sobre tu base de datos y obtén resultados de consultas SQL.
""")
# Mensaje de estado
if not env_ok:
gr.Warning("⚠️ " + env_message)
# Chatbot component
chatbot = gr.Chatbot(
label="Chat",
height=500,
show_label=True,
container=True,
type="messages",
elem_id="chatbot"
)
# Input area
with gr.Row():
question_input = gr.Textbox(
label="",
placeholder="Escribe tu pregunta aquí...",
container=False,
scale=5,
min_width=300,
max_lines=3,
autofocus=True,
elem_id="question-input"
)
submit_button = gr.Button(
"Enviar",
variant="primary",
min_width=100,
scale=1,
elem_id="send-button"
)
# System status
with gr.Accordion("ℹ️ Estado del sistema", open=not env_ok):
if not DEPENDENCIES_AVAILABLE:
gr.Markdown("""
## ❌ Dependencias faltantes
Para ejecutar esta aplicación localmente, necesitas instalar las dependencias:
```bash
pip install -r requirements.txt
```
""")
else:
if not agent:
gr.Markdown(f"""
## ⚠️ Configuración incompleta
No se pudo inicializar el agente de base de datos. Por favor, verifica que:
1. Todas las variables de entorno estén configuradas correctamente
2. La base de datos esté accesible
3. La API de Google Gemini esté configurada
**Error:** {agent_error if agent_error else 'No se pudo determinar el error'}
### Configuración local
Crea un archivo `.env` en la raíz del proyecto con las siguientes variables:
```
DB_USER=tu_usuario
DB_PASSWORD=tu_contraseña
DB_HOST=tu_servidor
DB_NAME=tu_base_de_datos
GOOGLE_API_KEY=tu_api_key_de_google
```
""")
else:
if os.getenv('SPACE_ID'):
# Modo demo en Hugging Face Spaces
gr.Markdown("""
## 🚀 Modo Demo
Esta es una demostración del asistente de base de datos SQL. Para usar la versión completa con conexión a base de datos:
1. Clona este espacio en tu cuenta de Hugging Face
2. Configura las variables de entorno en la configuración del espacio:
- `DB_USER`: Tu usuario de base de datos
- `DB_PASSWORD`: Tu contraseña de base de datos
- `DB_HOST`: La dirección del servidor de base de datos
- `DB_NAME`: El nombre de la base de datos
- `GOOGLE_API_KEY`: Tu clave de API de Google Gemini
**Nota:** Actualmente estás en modo de solo demostración.
""")
else:
gr.Markdown("""
## ✅ Sistema listo
El asistente está listo para responder tus preguntas sobre la base de datos.
""")
# Hidden component for streaming output
streaming_output_display = gr.Textbox(visible=False)
return demo, chatbot, question_input, submit_button, streaming_output_display
def create_application():
"""Create and configure the Gradio application."""
# Create the UI components
demo, chatbot, question_input, submit_button, streaming_output_display = create_ui()
def user_message(user_input: str, chat_history: List[Dict]) -> Tuple[str, List[Dict]]:
"""Add user message to chat history and clear input."""
if not user_input.strip():
return "", chat_history
logger.info(f"User message: {user_input}")
# Initialize chat history if needed
if chat_history is None:
chat_history = []
# Add user message
chat_history.append({"role": "user", "content": user_input})
# Add empty assistant response
chat_history.append({"role": "assistant", "content": ""})
# Clear the input
return "", chat_history
async def bot_response(chat_history: List[Dict]) -> List[Dict]:
"""Get bot response and update chat history."""
if not chat_history or chat_history[-1]["role"] != "assistant":
return chat_history
try:
# Get the user's question (second to last message)
if len(chat_history) < 2:
return chat_history
question = chat_history[-2]["content"]
logger.info(f"Processing question: {question}")
# Call the agent and stream the response
async for response in stream_agent_response(question, chat_history[:-2]):
if isinstance(response, tuple) and len(response) > 0 and isinstance(response[0], list):
messages = response[0]
if messages and messages[-1]["role"] == "assistant":
# Update the assistant's response
chat_history[-1] = messages[-1]
yield chat_history
logger.info("Response generation complete")
except Exception as e:
error_msg = f"Error al procesar la solicitud: {str(e)}"
logger.error(error_msg, exc_info=True)
chat_history[-1]["content"] = error_msg
yield chat_history
# Event handlers
with demo:
# Handle form submission
msg_submit = question_input.submit(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=True
).then(
fn=bot_response,
inputs=[chatbot],
outputs=[chatbot],
api_name="ask"
)
# Handle button click
btn_click = submit_button.click(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=True
).then(
fn=bot_response,
inputs=[chatbot],
outputs=[chatbot]
)
return demo
# Create the application
demo = create_application()
# Configuración para Hugging Face Spaces
def get_app():
"""Obtiene la instancia de la aplicación Gradio para Hugging Face Spaces."""
# Verificar si estamos en un entorno de Hugging Face Spaces
if os.getenv('SPACE_ID'):
# Configuración específica para Spaces
demo.title = "🤖 Asistente de Base de Datos SQL (Demo)"
demo.description = """
Este es un demo del asistente de base de datos SQL.
Para usar la versión completa con conexión a base de datos, clona este espacio y configura las variables de entorno.
"""
return demo
# Para desarrollo local
if __name__ == "__main__":
# Configuración para desarrollo local - versión simplificada para Gradio 5.x
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
share=False
)