developer28 commited on
Commit
492d521
Β·
verified Β·
1 Parent(s): 184a21b
Files changed (1) hide show
  1. app.py +191 -0
app.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import glob
4
+ import pandas as pd
5
+ import numpy as np
6
+ import gradio as gr
7
+ from ta.momentum import RSIIndicator
8
+ from ta.trend import MACD, SMAIndicator
9
+ from ta.volatility import BollingerBands
10
+ import lightgbm as lgb
11
+
12
+ # ==============================
13
+ # CONFIG
14
+ # ==============================
15
+ DATA_FOLDER = r"D:\Internship_Project\Crypto_Data_Tracker"
16
+
17
+ # ==============================
18
+ # LOAD & PREPARE DATA
19
+ # ==============================
20
+ def load_crypto_data():
21
+ csv_files = glob.glob(os.path.join(DATA_FOLDER, "*.csv"))
22
+ all_data = []
23
+ for file in csv_files:
24
+ coin_name = os.path.basename(file).replace('.csv', '')
25
+ temp_df = pd.read_csv(file)
26
+ temp_df['Coin'] = coin_name
27
+ all_data.append(temp_df)
28
+
29
+ df = pd.concat(all_data, ignore_index=True)
30
+
31
+ # Detect date and price columns
32
+ date_col = next((c for c in df.columns if 'date' in c.lower()), None)
33
+ price_col = next((c for c in df.columns if 'close' in c.lower()), None)
34
+ coin_col = 'Coin'
35
+
36
+ df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
37
+ df = df.dropna(subset=[date_col])
38
+
39
+ # Add technical indicators
40
+ def add_indicators(g):
41
+ g = g.sort_values(by=date_col).copy()
42
+ g['Daily_Return'] = g[price_col].pct_change()
43
+ g['SMA_20'] = SMAIndicator(g[price_col], window=20).sma_indicator()
44
+ g['RSI'] = RSIIndicator(g[price_col], window=14).rsi()
45
+ macd = MACD(g[price_col])
46
+ g['MACD'] = macd.macd()
47
+ g['MACD_Signal'] = macd.macd_signal()
48
+ return g
49
+
50
+ df = df.groupby(coin_col, group_keys=False).apply(add_indicators)
51
+
52
+ return df, price_col, date_col, coin_col
53
+
54
+
55
+ # ==============================
56
+ # SIMPLE CRYPTO PREDICTOR
57
+ # ==============================
58
+ class SimpleCryptoPredictor:
59
+ def __init__(self, df, price_col, date_col, coin_col):
60
+ self.df = df.copy()
61
+ self.price_col = price_col
62
+ self.date_col = date_col
63
+ self.coin_col = coin_col
64
+ self.model = None
65
+ self.available_coins = []
66
+ self.feature_columns = []
67
+
68
+ def initialize(self):
69
+ coin_counts = self.df[self.coin_col].value_counts()
70
+ self.available_coins = coin_counts[coin_counts >= 50].index.tolist()
71
+ self._train_model()
72
+
73
+ def _train_model(self):
74
+ features_list = []
75
+ for coin in self.available_coins[:20]:
76
+ coin_data = self.df[self.df[self.coin_col] == coin].copy()
77
+ if len(coin_data) < 100:
78
+ continue
79
+ features_df = self._create_features(coin_data, include_target=True)
80
+ if len(features_df) > 0:
81
+ features_list.append(features_df)
82
+
83
+ all_features = pd.concat(features_list, ignore_index=True)
84
+ feature_cols = ['return_1d', 'return_3d', 'return_7d', 'rsi_norm',
85
+ 'vol_7d', 'sma_signal', 'return_lag1', 'vol_lag1']
86
+ available_cols = [c for c in feature_cols if c in all_features.columns]
87
+ X = all_features[available_cols].copy()
88
+ y = all_features['target_return'].copy()
89
+ mask = ~(X.isna().any(axis=1) | y.isna())
90
+ X = X[mask]
91
+ y = y[mask]
92
+
93
+ self.model = lgb.LGBMRegressor(n_estimators=100, max_depth=6, learning_rate=0.1, random_state=42)
94
+ self.model.fit(X, y)
95
+ self.feature_columns = available_cols
96
+
97
+ def _create_features(self, coin_data, include_target=False):
98
+ coin_data = coin_data.sort_values(self.date_col).copy()
99
+ if len(coin_data) < 30:
100
+ return pd.DataFrame()
101
+ coin_data['return_1d'] = coin_data[self.price_col].pct_change(1) * 100
102
+ coin_data['return_3d'] = coin_data[self.price_col].pct_change(3) * 100
103
+ coin_data['return_7d'] = coin_data[self.price_col].pct_change(7) * 100
104
+ coin_data['rsi_norm'] = (coin_data['RSI'] - 50) / 50
105
+ coin_data['vol_7d'] = coin_data['return_1d'].rolling(7).std()
106
+ coin_data['sma_20'] = coin_data[self.price_col].rolling(20).mean()
107
+ coin_data['sma_signal'] = np.where(coin_data[self.price_col] > coin_data['sma_20'], 1, -1)
108
+ coin_data['return_lag1'] = coin_data['return_1d'].shift(1)
109
+ coin_data['vol_lag1'] = coin_data['vol_7d'].shift(1)
110
+ if include_target:
111
+ coin_data['price_future'] = coin_data[self.price_col].shift(-1)
112
+ coin_data['target_return'] = ((coin_data['price_future'] - coin_data[self.price_col]) / coin_data[self.price_col] * 100)
113
+ coin_data = coin_data.replace([np.inf, -np.inf], np.nan)
114
+ return coin_data
115
+
116
+ def predict_coin(self, coin_name):
117
+ if coin_name not in self.available_coins:
118
+ return f"Coin '{coin_name}' not found."
119
+ coin_data = self.df[self.df[self.coin_col] == coin_name].copy()
120
+ features_df = self._create_features(coin_data)
121
+ latest = features_df.iloc[-1]
122
+ feature_values = [latest.get(c, 0) for c in self.feature_columns]
123
+ pred_return = self.model.predict([feature_values])[0]
124
+ price = latest.get(self.price_col, 0)
125
+ if pred_return > 3:
126
+ rec = "STRONG BUY 🟒"
127
+ elif pred_return > 1:
128
+ rec = "BUY 🟒"
129
+ elif pred_return > -1:
130
+ rec = "HOLD 🟑"
131
+ elif pred_return > -3:
132
+ rec = "SELL πŸ”΄"
133
+ else:
134
+ rec = "STRONG SELL πŸ”΄"
135
+ return f"{coin_name}: Price=${price:.4f}, Predicted Return={pred_return:+.2f}%, Recommendation={rec}"
136
+
137
+ def find_opportunities(self, top_n=10):
138
+ predictions = []
139
+ for coin in self.available_coins:
140
+ coin_data = self.df[self.df[self.coin_col] == coin].copy()
141
+ features_df = self._create_features(coin_data)
142
+ if len(features_df) == 0:
143
+ continue
144
+ latest = features_df.iloc[-1]
145
+ feature_values = [latest.get(c, 0) for c in self.feature_columns]
146
+ pred_return = self.model.predict([feature_values])[0]
147
+ predictions.append((coin, latest.get(self.price_col, 0), pred_return))
148
+ predictions.sort(key=lambda x: x[2], reverse=True)
149
+ return pd.DataFrame(predictions[:top_n], columns=['Coin', 'Price', 'Predicted Return %'])
150
+
151
+
152
+ # ==============================
153
+ # INIT
154
+ # ==============================
155
+ df, price_col, date_col, coin_col = load_crypto_data()
156
+ predictor = SimpleCryptoPredictor(df, price_col, date_col, coin_col)
157
+ predictor.initialize()
158
+
159
+
160
+ # ==============================
161
+ # GRADIO APP
162
+ # ==============================
163
+ def predict_single(coin):
164
+ return predictor.predict_coin(coin)
165
+
166
+ def top_opportunities(n):
167
+ df_top = predictor.find_opportunities(int(n))
168
+ return df_top
169
+
170
+ coin_dropdown = gr.Dropdown(choices=predictor.available_coins, label="Select Coin")
171
+ top_n_slider = gr.Slider(1, 20, value=10, step=1, label="Top N Opportunities")
172
+
173
+ with gr.Blocks() as demo:
174
+ gr.Markdown("## πŸ“ˆ Crypto Prediction Dashboard")
175
+ with gr.Row():
176
+ with gr.Column():
177
+ gr.Markdown("### Single Coin Prediction")
178
+ coin_input = gr.Dropdown(choices=predictor.available_coins, label="Select Coin")
179
+ predict_btn = gr.Button("Predict")
180
+ prediction_output = gr.Textbox(label="Prediction Result")
181
+ with gr.Column():
182
+ gr.Markdown("### Top Opportunities")
183
+ top_n_input = gr.Slider(1, 20, value=10, step=1, label="Top N Opportunities")
184
+ top_btn = gr.Button("Find Opportunities")
185
+ table_output = gr.Dataframe(headers=["Coin", "Price", "Predicted Return %"])
186
+
187
+ predict_btn.click(predict_single, inputs=coin_input, outputs=prediction_output)
188
+ top_btn.click(top_opportunities, inputs=top_n_input, outputs=table_output)
189
+
190
+ if __name__ == "__main__":
191
+ demo.launch()