Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -14,16 +14,28 @@ from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection | |
| 14 | 
             
            # Add supervision for better visualization
         | 
| 15 | 
             
            import supervision as sv
         | 
| 16 |  | 
| 17 | 
            -
            # Model  | 
| 18 | 
            -
             | 
|  | |
|  | |
|  | |
| 19 |  | 
| 20 | 
            -
            #  | 
| 21 | 
             
            device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
|  | |
| 24 |  | 
| 25 | 
             
            @spaces.GPU
         | 
| 26 | 
            -
            def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 27 | 
             
                # Convert numpy array to PIL Image if needed
         | 
| 28 | 
             
                if isinstance(input_image, np.ndarray):
         | 
| 29 | 
             
                    if input_image.ndim == 3:
         | 
| @@ -63,8 +75,6 @@ def run_grounding(input_image, grounding_caption, box_threshold, text_threshold) | |
| 63 |  | 
| 64 | 
             
                for i, (box, score, label) in enumerate(zip(result["boxes"], result["scores"], result["labels"])):
         | 
| 65 | 
             
                    # box is xyxy format [xmin, ymin, xmax, ymax]
         | 
| 66 | 
            -
                    if label.strip() == "":
         | 
| 67 | 
            -
                        continue
         | 
| 68 | 
             
                    xyxy = box.tolist()
         | 
| 69 | 
             
                    boxes.append(xyxy)
         | 
| 70 | 
             
                    labels.append(label)
         | 
| @@ -144,12 +154,18 @@ if __name__ == "__main__": | |
| 144 | 
             
              }
         | 
| 145 | 
             
            """
         | 
| 146 | 
             
                with gr.Blocks(css=css) as demo:
         | 
| 147 | 
            -
                    gr.Markdown("<h1><center>MM Grounding DINO Base<h1><center>")
         | 
| 148 | 
            -
                    gr.Markdown("<h3><center>Open-World Detection with  | 
| 149 |  | 
| 150 | 
             
                    with gr.Row():
         | 
| 151 | 
             
                        with gr.Column():
         | 
| 152 | 
             
                            input_image = gr.Image(label="Input Image", type="pil")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 153 | 
             
                            grounding_caption = gr.Textbox(
         | 
| 154 | 
             
                                label="Detection Prompt (lowercase + each ends with a dot)",
         | 
| 155 | 
             
                                value="a person. a car."
         | 
| @@ -181,16 +197,16 @@ if __name__ == "__main__": | |
| 181 |  | 
| 182 | 
             
                    run_button.click(
         | 
| 183 | 
             
                        fn=run_grounding,
         | 
| 184 | 
            -
                        inputs=[input_image, grounding_caption, box_threshold, text_threshold],
         | 
| 185 | 
             
                        outputs=[gallery, det_text]
         | 
| 186 | 
             
                    )
         | 
| 187 |  | 
| 188 | 
             
                    gr.Examples(
         | 
| 189 | 
             
                        examples=[
         | 
| 190 | 
            -
                            ["000000039769.jpg", "a cat. a remote control.", 0.3, 0.25],
         | 
| 191 | 
            -
                            ["KakaoTalk_20250430_163200504.jpg", "cup. screen. hand.", 0.3, 0.25]
         | 
| 192 | 
             
                        ],
         | 
| 193 | 
            -
                        inputs=[input_image, grounding_caption, box_threshold, text_threshold],
         | 
| 194 | 
             
                        outputs=[gallery, det_text],
         | 
| 195 | 
             
                        fn=run_grounding,
         | 
| 196 | 
             
                        cache_examples=True,
         | 
|  | |
| 14 | 
             
            # Add supervision for better visualization
         | 
| 15 | 
             
            import supervision as sv
         | 
| 16 |  | 
| 17 | 
            +
            # Model IDs for Hugging Face
         | 
| 18 | 
            +
            MODEL_IDS = {
         | 
| 19 | 
            +
                "MM Grounding DINO Large": "rziga/mm_grounding_dino_large_all",
         | 
| 20 | 
            +
                "MM Grounding DINO Base": "rziga/mm_grounding_dino_base_all"
         | 
| 21 | 
            +
            }
         | 
| 22 |  | 
| 23 | 
            +
            # Global variables for model caching
         | 
| 24 | 
             
            device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 25 | 
            +
            loaded_model_name = None
         | 
| 26 | 
            +
            processor = None
         | 
| 27 | 
            +
            model = None
         | 
| 28 |  | 
| 29 | 
             
            @spaces.GPU
         | 
| 30 | 
            +
            def run_grounding(input_image, grounding_caption, model_choice, box_threshold, text_threshold):
         | 
| 31 | 
            +
                global loaded_model_name, processor, model
         | 
| 32 | 
            +
                
         | 
| 33 | 
            +
                # Load or reload model if changed
         | 
| 34 | 
            +
                if loaded_model_name != model_choice:
         | 
| 35 | 
            +
                    model_id = MODEL_IDS[model_choice]
         | 
| 36 | 
            +
                    processor = AutoProcessor.from_pretrained(model_id)
         | 
| 37 | 
            +
                    model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
         | 
| 38 | 
            +
                    loaded_model_name = model_choice
         | 
| 39 | 
             
                # Convert numpy array to PIL Image if needed
         | 
| 40 | 
             
                if isinstance(input_image, np.ndarray):
         | 
| 41 | 
             
                    if input_image.ndim == 3:
         | 
|  | |
| 75 |  | 
| 76 | 
             
                for i, (box, score, label) in enumerate(zip(result["boxes"], result["scores"], result["labels"])):
         | 
| 77 | 
             
                    # box is xyxy format [xmin, ymin, xmax, ymax]
         | 
|  | |
|  | |
| 78 | 
             
                    xyxy = box.tolist()
         | 
| 79 | 
             
                    boxes.append(xyxy)
         | 
| 80 | 
             
                    labels.append(label)
         | 
|  | |
| 154 | 
             
              }
         | 
| 155 | 
             
            """
         | 
| 156 | 
             
                with gr.Blocks(css=css) as demo:
         | 
| 157 | 
            +
                    gr.Markdown("<h1><center>MM Grounding DINO (Large & Base)<h1><center>")
         | 
| 158 | 
            +
                    gr.Markdown("<h3><center>Open-World Detection with MM Grounding DINO Models<h3><center>")
         | 
| 159 |  | 
| 160 | 
             
                    with gr.Row():
         | 
| 161 | 
             
                        with gr.Column():
         | 
| 162 | 
             
                            input_image = gr.Image(label="Input Image", type="pil")
         | 
| 163 | 
            +
                            model_choice = gr.Radio(
         | 
| 164 | 
            +
                                choices=list(MODEL_IDS.keys()),
         | 
| 165 | 
            +
                                value="MM Grounding DINO Large",
         | 
| 166 | 
            +
                                label="Select Model",
         | 
| 167 | 
            +
                                info="Choose between Large (better performance) or Base (faster) model"
         | 
| 168 | 
            +
                            )
         | 
| 169 | 
             
                            grounding_caption = gr.Textbox(
         | 
| 170 | 
             
                                label="Detection Prompt (lowercase + each ends with a dot)",
         | 
| 171 | 
             
                                value="a person. a car."
         | 
|  | |
| 197 |  | 
| 198 | 
             
                    run_button.click(
         | 
| 199 | 
             
                        fn=run_grounding,
         | 
| 200 | 
            +
                        inputs=[input_image, grounding_caption, model_choice, box_threshold, text_threshold],
         | 
| 201 | 
             
                        outputs=[gallery, det_text]
         | 
| 202 | 
             
                    )
         | 
| 203 |  | 
| 204 | 
             
                    gr.Examples(
         | 
| 205 | 
             
                        examples=[
         | 
| 206 | 
            +
                            ["000000039769.jpg", "a cat. a remote control.", "MM Grounding DINO Large", 0.3, 0.25],
         | 
| 207 | 
            +
                            ["KakaoTalk_20250430_163200504.jpg", "cup. screen. hand.", "MM Grounding DINO Base", 0.3, 0.25]
         | 
| 208 | 
             
                        ],
         | 
| 209 | 
            +
                        inputs=[input_image, grounding_caption, model_choice, box_threshold, text_threshold],
         | 
| 210 | 
             
                        outputs=[gallery, det_text],
         | 
| 211 | 
             
                        fn=run_grounding,
         | 
| 212 | 
             
                        cache_examples=True,
         |