Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) | |
Copyright(c) 2023 lyuwenyu. All Rights Reserved. | |
""" | |
from typing import Dict | |
import torch | |
import torch.distributed | |
import torch.nn.functional as F | |
import torchvision | |
from torch import Tensor | |
from ...core import register | |
__all__ = [ | |
"DetNMSPostProcessor", | |
] | |
class DetNMSPostProcessor(torch.nn.Module): | |
def __init__( | |
self, | |
iou_threshold=0.7, | |
score_threshold=0.01, | |
keep_topk=300, | |
box_fmt="cxcywh", | |
logit_fmt="sigmoid", | |
) -> None: | |
super().__init__() | |
self.iou_threshold = iou_threshold | |
self.score_threshold = score_threshold | |
self.keep_topk = keep_topk | |
self.box_fmt = box_fmt.lower() | |
self.logit_fmt = logit_fmt.lower() | |
self.logit_func = getattr(F, self.logit_fmt, None) | |
self.deploy_mode = False | |
def forward(self, outputs: Dict[str, Tensor], orig_target_sizes: Tensor): | |
logits, boxes = outputs["pred_logits"], outputs["pred_boxes"] | |
pred_boxes = torchvision.ops.box_convert(boxes, in_fmt=self.box_fmt, out_fmt="xyxy") | |
pred_boxes *= orig_target_sizes.repeat(1, 2).unsqueeze(1) | |
values, pred_labels = torch.max(logits, dim=-1) | |
if self.logit_func: | |
pred_scores = self.logit_func(values) | |
else: | |
pred_scores = values | |
# TODO for onnx export | |
if self.deploy_mode: | |
blobs = { | |
"pred_labels": pred_labels, | |
"pred_boxes": pred_boxes, | |
"pred_scores": pred_scores, | |
} | |
return blobs | |
results = [] | |
for i in range(logits.shape[0]): | |
score_keep = pred_scores[i] > self.score_threshold | |
pred_box = pred_boxes[i][score_keep] | |
pred_label = pred_labels[i][score_keep] | |
pred_score = pred_scores[i][score_keep] | |
keep = torchvision.ops.batched_nms(pred_box, pred_score, pred_label, self.iou_threshold) | |
keep = keep[: self.keep_topk] | |
blob = { | |
"labels": pred_label[keep], | |
"boxes": pred_box[keep], | |
"scores": pred_score[keep], | |
} | |
results.append(blob) | |
return results | |
def deploy( | |
self, | |
): | |
self.eval() | |
self.deploy_mode = True | |
return self | |