|
from tensorflow.keras.preprocessing.image import load_img, img_to_array |
|
import numpy as np |
|
import cv2 |
|
import gradio as gd |
|
from keras.models import load_model |
|
model2 = load_model("./my_model.keras") |
|
|
|
def predict(image): |
|
image=cv2.resize(image,(240,240)) |
|
image=img_to_array(image)/255.0 |
|
image = np.expand_dims(image, axis=0) |
|
prediction=model2.predict(image) |
|
predictions=np.array(prediction) |
|
predicted_index=np.argmax(predictions) |
|
index_to_class={0:'Disease : Alzheimer || Type : Moderate_Demented', |
|
1:'Disease : Alzheimer || Type : MildDemented', |
|
2:'Disease : Alzheimer || Type : VeryMildDemented', |
|
3:'Disease : tumor || Type : glioma', |
|
4:'Disease :tumor || Type : meningioma', |
|
5: 'Disease : tumor || Type : pituitary', |
|
6:'Disease : None'} |
|
predicted_class_name=index_to_class[predicted_index] |
|
return predicted_class_name |
|
|
|
|
|
headline="BRAIN DISEASE DETECTION " |
|
a=gd.Interface(predict,inputs=gd.Image(),outputs="text",title=headline) |
|
a.launch(share=True, debug=False) |