dev-bjoern's picture
Fix ZeroGPU recursion: split click handler from GPU function
eef56f8
raw
history blame
8.97 kB
"""
SAM 3D Objects MCP Server
Image + Text/Click β†’ 3D Object (GLB)
Uses SAM3 for segmentation and SAM 3D Objects for 3D reconstruction.
"""
import os
import sys
import subprocess
import tempfile
import uuid
from pathlib import Path
import gradio as gr
import numpy as np
import spaces
from huggingface_hub import snapshot_download, login
from PIL import Image
# Login with HF_TOKEN if available
if os.environ.get("HF_TOKEN"):
login(token=os.environ.get("HF_TOKEN"))
# Clone sam-3d-objects repo if not exists
SAM3D_PATH = Path("/home/user/app/sam-3d-objects")
if not SAM3D_PATH.exists():
print("Cloning sam-3d-objects repository...")
subprocess.run([
"git", "clone",
"https://github.com/facebookresearch/sam-3d-objects.git",
str(SAM3D_PATH)
], check=True)
sys.path.insert(0, str(SAM3D_PATH))
sys.path.insert(0, str(SAM3D_PATH))
# Global models
SAM3D_MODEL = None
SAM3_PREDICTOR = None
def load_sam3():
"""Load SAM3 for segmentation"""
global SAM3_PREDICTOR
if SAM3_PREDICTOR is not None:
return SAM3_PREDICTOR
import torch
from sam3.model_builder import build_sam3_image_model
from sam3.model.sam3_image_processor import Sam3Processor
print("Loading SAM3 model...")
model = build_sam3_image_model()
SAM3_PREDICTOR = Sam3Processor(model)
print("βœ“ SAM3 loaded")
return SAM3_PREDICTOR
def load_sam3d():
"""Load SAM 3D Objects model"""
global SAM3D_MODEL
if SAM3D_MODEL is not None:
return SAM3D_MODEL
import torch
print("Loading SAM 3D Objects model...")
checkpoint_dir = snapshot_download(
repo_id="facebook/sam-3d-objects",
token=os.environ.get("HF_TOKEN")
)
from sam_3d_objects import Sam3dObjects
device = "cuda" if torch.cuda.is_available() else "cpu"
SAM3D_MODEL = Sam3dObjects.from_pretrained(checkpoint_dir, device=device)
print("βœ“ SAM 3D Objects loaded")
return SAM3D_MODEL
@spaces.GPU(duration=60)
def segment_with_text(image: np.ndarray, text_prompt: str):
"""Segment object using text prompt with SAM3"""
if image is None:
return None, None, "❌ No image provided"
if not text_prompt:
return None, None, "❌ No text prompt provided"
try:
from PIL import Image as PILImage
processor = load_sam3()
# Convert to PIL
if isinstance(image, np.ndarray):
pil_image = PILImage.fromarray(image)
else:
pil_image = image
# Run SAM3 with text prompt
state = processor.set_image(pil_image)
output = processor.set_text_prompt(state=state, prompt=text_prompt)
if output is None or "masks" not in output:
return image, None, "⚠️ No object found"
masks = output["masks"]
scores = output.get("scores", [1.0])
if len(masks) == 0:
return image, None, "⚠️ No object found"
# Use best mask
best_idx = np.argmax(scores) if len(scores) > 0 else 0
mask = np.array(masks[best_idx])
# Create overlay
overlay = image.copy()
overlay[mask > 0] = (overlay[mask > 0] * 0.5 + np.array([0, 255, 0]) * 0.5).astype(np.uint8)
return overlay, (mask > 0).astype(np.uint8) * 255, f"βœ“ Found: {text_prompt}"
except Exception as e:
import traceback
traceback.print_exc()
return image, None, f"❌ Error: {e}"
def handle_click(image, evt: gr.SelectData):
"""Handle click event and extract coordinates"""
if image is None or evt is None:
return None, None, None, "❌ Click on an image first"
# Store coordinates and pass to GPU function
x, y = evt.index[0], evt.index[1]
return image, x, y, "Processing..."
@spaces.GPU(duration=60)
def segment_with_point(image: np.ndarray, x: int, y: int):
"""Segment object at point with SAM3"""
if image is None:
return None, None, "❌ No image provided"
if x is None or y is None:
return None, None, "❌ No point selected"
try:
from PIL import Image as PILImage
processor = load_sam3()
# Convert to PIL
if isinstance(image, np.ndarray):
pil_image = PILImage.fromarray(image)
else:
pil_image = image
# Run SAM3 with point prompt
state = processor.set_image(pil_image)
output = processor.set_point_prompt(state=state, points=[[x, y]], labels=[1])
if output is None or "masks" not in output:
return image, None, "⚠️ No object found"
masks = output["masks"]
scores = output.get("scores", [1.0])
if len(masks) == 0:
return image, None, "⚠️ No object found"
# Use best mask
best_idx = np.argmax(scores) if len(scores) > 0 else 0
mask = np.array(masks[best_idx])
# Create overlay
overlay = image.copy()
overlay[mask > 0] = (overlay[mask > 0] * 0.5 + np.array([0, 255, 0]) * 0.5).astype(np.uint8)
return overlay, (mask > 0).astype(np.uint8) * 255, "βœ“ Object selected"
except Exception as e:
import traceback
traceback.print_exc()
return image, None, f"❌ Error: {e}"
@spaces.GPU(duration=120)
def reconstruct_3d(image: np.ndarray, mask: np.ndarray):
"""
Reconstruct 3D object from image and mask.
Args:
image: Input RGB image
mask: Binary mask from SAM3
Returns:
tuple: (glb_path, status)
"""
if image is None:
return None, "❌ No image provided"
if mask is None:
return None, "❌ No mask - segment object first"
try:
import torch
import trimesh
model = load_sam3d()
# Ensure mask is binary
if len(mask.shape) == 3:
mask = mask[:, :, 0]
mask = (mask > 127).astype(np.uint8)
# Run 3D reconstruction
outputs = model.predict(image, mask)
if outputs is None:
return None, "⚠️ Reconstruction failed"
# Export as GLB
output_dir = tempfile.mkdtemp()
glb_path = f"{output_dir}/object_{uuid.uuid4().hex[:8]}.glb"
# Get vertices from gaussian splat
vertices = outputs.get_xyz().cpu().numpy()
# Export as point cloud GLB
cloud = trimesh.PointCloud(vertices)
cloud.export(glb_path, file_type='glb')
return glb_path, f"βœ“ Reconstructed ({len(vertices)} points)"
except Exception as e:
import traceback
traceback.print_exc()
return None, f"❌ Error: {e}"
# Gradio Interface
with gr.Blocks(title="SAM 3D Objects MCP") as demo:
gr.Markdown("""
# πŸ“¦ SAM 3D Objects MCP Server
**Image β†’ 3D Object (GLB)**
1. Upload image
2. Segment: Type what to select OR click on object
3. Reconstruct 3D
""")
mask_state = gr.State(None)
click_x = gr.State(None)
click_y = gr.State(None)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="numpy")
with gr.Row():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="e.g. 'the chair', 'red car', 'coffee mug'",
scale=3
)
segment_btn = gr.Button("🎯 Segment", scale=1)
gr.Markdown("*Or click directly on the object in the image*")
with gr.Column():
preview = gr.Image(label="Segmentation Preview", type="numpy", interactive=False)
status = gr.Textbox(label="Status")
with gr.Row():
reconstruct_btn = gr.Button("πŸš€ Reconstruct 3D", variant="primary", size="lg")
with gr.Row():
with gr.Column():
output_model = gr.Model3D(label="3D Preview")
with gr.Column():
output_file = gr.File(label="Download GLB")
# Events
segment_btn.click(
segment_with_text,
inputs=[input_image, text_prompt],
outputs=[preview, mask_state, status]
)
# Click handler: first extract coordinates (no GPU), then segment (GPU)
input_image.select(
handle_click,
inputs=[input_image],
outputs=[input_image, click_x, click_y, status]
).then(
segment_with_point,
inputs=[input_image, click_x, click_y],
outputs=[preview, mask_state, status]
)
reconstruct_btn.click(
reconstruct_3d,
inputs=[input_image, mask_state],
outputs=[output_model, status]
)
output_model.change(lambda x: x, inputs=[output_model], outputs=[output_file])
gr.Markdown("""
---
### MCP Server
```json
{
"mcpServers": {
"sam3d-objects": {
"url": "https://dev-bjoern-sam3d-objects-mcp.hf.space/gradio_api/mcp/sse"
}
}
}
```
""")
if __name__ == "__main__":
demo.launch(mcp_server=True)