Test-Prompt / frontend /gradio_app.py
abhiman181025's picture
First commit
1314bf5
import gradio as gr
import pandas as pd
import os
from pathlib import Path
import shutil
import tempfile
import uuid
import spaces
from typing import Optional
from backend import ConfigManager, ModelManager, InferenceEngine
from backend.utils.metrics import create_accuracy_table, save_dataframe_to_csv
class GradioApp:
"""Gradio application for InternVL3 prompt engineering."""
def __init__(self):
"""Initialize the Gradio application."""
# Initialize backend components
self.config_manager = ConfigManager()
self.model_manager = ModelManager(self.config_manager)
self.inference_engine = InferenceEngine(self.model_manager, self.config_manager)
# Try to preload default model
try:
self.model_manager.preload_default_model()
print("βœ… Default model preloaded successfully!")
except Exception as e:
print(f"⚠️ Default model preloading failed: {str(e)}")
print("The model will be loaded when first needed.")
def get_current_model_status(self) -> str:
"""Get current model status for display."""
return self.model_manager.get_current_model_status()
def handle_stop_button(self):
"""Handle stop button click."""
message = self.inference_engine.set_stop_flag()
return message, gr.update(visible=True)
def on_model_change(self, model_selection: str, quantization_type: str) -> str:
"""Handle model/quantization dropdown changes."""
current_status = self.get_current_model_status()
if model_selection and quantization_type:
available_models = self.config_manager.get_available_models()
target_id = available_models.get(model_selection)
current_model_id = None
if self.model_manager.current_model:
current_model_id = self.model_manager.current_model.model_id
if (current_model_id != target_id or
(self.model_manager.current_model and
self.model_manager.current_model.current_quantization != quantization_type)):
return f"πŸ”„ Will load {model_selection} with {quantization_type} when processing starts"
return current_status
def get_model_choices_with_info(self) -> list[str]:
"""Get model choices with type information for dropdown."""
choices = []
for model_name in self.config_manager.get_available_models().keys():
model_config = self.config_manager.get_model_config(model_name)
model_type = model_config.get('model_type', 'unknown').upper()
choices.append(f"{model_name} ({model_type})")
return choices
def extract_model_name_from_choice(self, choice: str) -> str:
"""Extract the actual model name from the dropdown choice."""
return choice.split(' (')[0] if ' (' in choice else choice
def update_image_preview(self, evt: gr.SelectData, df, folder_path):
"""Update image preview when table row is selected."""
if df is None or evt.index[0] >= len(df):
return None, ""
try:
# Use the full dataframe with image paths
full_df = getattr(self.inference_engine, 'full_df', None)
if full_df is None or evt.index[0] >= len(full_df):
return None, ""
selected_row = full_df.iloc[evt.index[0]]
image_path = selected_row["Image Path"]
model_output = selected_row["Model Output"]
if not os.path.exists(image_path):
return None, model_output
file_extension = Path(image_path).suffix
temp_filename = f"gradio_preview_{uuid.uuid4().hex}{file_extension}"
temp_path = os.path.join(tempfile.gettempdir(), temp_filename)
shutil.copy2(image_path, temp_path)
return temp_path, model_output
except Exception as e:
print(f"Error loading image preview: {e}")
return None, ""
def download_results_csv(self, results_table_data):
"""Download results as CSV file."""
try:
print(f"Download function called with data type: {type(results_table_data)}")
if results_table_data is None:
print("No data to download")
return None
# Handle different data types from Gradio
if hasattr(results_table_data, 'values'):
# If it's a pandas DataFrame
df = results_table_data
elif isinstance(results_table_data, list):
# If it's a list of lists or list of dicts
if len(results_table_data) == 0:
print("Empty data")
return None
df = pd.DataFrame(results_table_data, columns=["S.No", "Image Name", "Ground Truth", "Binary Output", "Model Output"])
else:
# Try to convert to DataFrame
df = pd.DataFrame(results_table_data)
print(f"DataFrame shape: {df.shape}")
print(f"DataFrame columns: {df.columns.tolist()}")
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False)
df.to_csv(temp_file.name, index=False)
temp_file.close()
print(f"CSV file created: {temp_file.name}")
return temp_file.name
except Exception as e:
print(f"Error in download_results_csv: {str(e)}")
import traceback
traceback.print_exc()
return None
def submit_and_show_metrics(self, df):
"""Generate and show metrics for results."""
if df is None:
return df, df, None, None, None, gr.update(visible=False), gr.update(visible=False), ""
# Only create metrics if all outputs are valid yes/no responses
try:
metrics_df, cm_plot_path, cm_values = create_accuracy_table(df)
return df, df, metrics_df, cm_plot_path, cm_values, gr.update(visible=True), gr.update(visible=True), "πŸ“Š Metrics calculated successfully!"
except Exception as e:
print(f"Could not create metrics: {str(e)}")
return df, df, None, None, None, gr.update(visible=False), gr.update(visible=True), f"⚠️ Could not calculate metrics: {str(e)}"
@spaces.GPU
def process_input_ui(self, folder_path, prompt, quantization_type, model_selection):
"""UI wrapper for processing input with progress updates."""
if not folder_path or not prompt.strip():
return (gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
"Please upload a folder and enter a prompt.", None, None, None,
gr.update(visible=False), gr.update(visible=False),
gr.update(value="⚠️ Please upload a folder and enter a prompt.", visible=True), "", gr.update(visible=False))
# Extract actual model name from the dropdown choice
actual_model_name = self.extract_model_name_from_choice(model_selection)
# Check if model needs to be downloaded and show progress
available_models = self.config_manager.get_available_models()
model_id = available_models[actual_model_name]
# Show processing message and hide stop status
yield (gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
None, None, None, None,
gr.update(visible=False), gr.update(visible=False),
gr.update(value="πŸš€ Initializing processing...", visible=True), prompt, gr.update(visible=False))
# Process the input
error, show_results, show_image, table, error_message, final_message = self.inference_engine.process_folder_input(
folder_path, prompt, quantization_type, actual_model_name, gr.Progress()
)
# If error is visible, show results section but keep error visible
if error["visible"]:
yield (gr.update(visible=False), gr.update(visible=True), gr.update(visible=True),
error, None, None, None,
gr.update(visible=False), gr.update(visible=False),
gr.update(value=final_message, visible=True), prompt, gr.update(visible=False))
else:
yield (gr.update(visible=False), gr.update(visible=True), gr.update(visible=True),
None, show_results, show_image, table,
gr.update(visible=True), gr.update(visible=False),
gr.update(value=final_message, visible=True), prompt, gr.update(visible=False))
def rerun_ui(self, df, new_prompt, quantization_type, model_selection):
"""UI wrapper for rerun with progress updates."""
if df is None or not new_prompt.strip():
return (df, None, None, None,
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), gr.update(visible=True), "⚠️ Please provide a valid prompt", "")
# Extract actual model name from the dropdown choice
actual_model_name = self.extract_model_name_from_choice(model_selection)
# Hide all sections and show only processing, clear model output display
yield (df, None, None, None,
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), gr.update(visible=True), "πŸš€ Initializing reprocessing...", "Select a row from the table to see model output...")
# Process with new prompt
updated_df, accuracy_table_data, cm_plot, cm_values, section4_vis, progress_vis, final_message = self.inference_engine.rerun_with_new_prompt(
df, new_prompt, quantization_type, actual_model_name, gr.Progress()
)
# Show prompt editing and results sections again, show Generate Metrics button, hide progress, and clear model output display
yield (updated_df, accuracy_table_data, cm_plot, cm_values,
gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), section4_vis,
gr.update(visible=True), gr.update(visible=False), final_message, "Select a row from the table to see updated model output...")
def create_interface(self):
"""Create and return the Gradio interface."""
# CSS from original app.py
css = """
.progress {
margin: 15px 0;
padding: 20px;
border-radius: 12px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border: none;
color: white;
font-weight: 600;
font-size: 16px;
text-align: center;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);
animation: progressPulse 2s ease-in-out infinite alternate;
}
@keyframes progressPulse {
0% {
transform: scale(1);
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);
}
100% {
transform: scale(1.02);
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4);
}
}
.processing {
background: linear-gradient(45deg, #f0f9ff, #e3f2fd);
border: 2px solid #1976d2;
border-radius: 10px;
padding: 20px;
text-align: center;
margin: 10px 0;
}
.gr-button.processing {
background-color: #ffa726 !important;
color: white !important;
pointer-events: none;
}
/* Stop button styling */
.stop-button {
background: linear-gradient(135deg, #ff4757 0%, #c44569 100%) !important;
border: none !important;
color: white !important;
font-weight: 700 !important;
font-size: 16px !important;
box-shadow: 0 4px 15px rgba(255, 71, 87, 0.4) !important;
transition: all 0.3s ease !important;
}
.stop-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 8px 25px rgba(255, 71, 87, 0.6) !important;
background: linear-gradient(135deg, #ff3742 0%, #b83754 100%) !important;
}
.stop-status {
color: #ff4757;
font-weight: 600;
background: rgba(255, 71, 87, 0.1);
padding: 10px;
border-radius: 8px;
border-left: 4px solid #ff4757;
margin: 10px 0;
}
/* Enhanced button styling */
.gr-button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border: none;
border-radius: 8px;
color: white;
font-weight: 600;
transition: all 0.3s ease;
}
.gr-button:hover {
transform: translateY(-2px);
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4);
}
"""
with gr.Blocks(theme="origin", css=css) as demo:
gr.Markdown("""
<h1 style='text-align:center; color:#1976d2; font-size:2.5em; font-weight:bold; margin-bottom:40px!important;'>PROMPT_PILOT</h1>
<p style='text-align:center; color:#666; font-size:1.1em; margin-bottom:30px;'>
πŸ€– AI-powered analysis with different vision models
</p>
<h2 style='text-align:center; color:#666; font-size:1.1em; margin-bottom:30px;'>
Note: Currently Accuracy only works properly in case of binary output. For other cases kindly download the csv and calculate the accuracy separately.
</h2>
""", elem_id="main-title")
# Model and Quantization selection dropdowns at the top
model_choices = self.get_model_choices_with_info()
default_choice = f"{self.config_manager.get_default_model()} (INTERNVL)"
with gr.Row():
model_dropdown = gr.Dropdown(
choices=model_choices,
value=default_choice,
label="πŸ€– Model Selection",
info="Select model: InternVL (vision+text), Qwen (text-only)",
elem_id="model-dropdown"
)
quantization_dropdown = gr.Dropdown(
choices=["quantized(8bit)", "non-quantized(fp16)"],
value="non-quantized(fp16)",
label="πŸ”§ Model Quantization",
info="Select quantization type: quantized (8bit) uses less memory, non-quantized (fp16) for better quality",
elem_id="quantization-dropdown"
)
# Model status indicator
with gr.Row():
model_status = gr.Markdown(
value=self.get_current_model_status(),
label="Model Status",
elem_classes=["model-status"]
)
# Stop button row
with gr.Row():
stop_btn = gr.Button("πŸ›‘ STOP PROCESSING", variant="stop", size="lg", elem_classes=["stop-button"])
stop_status = gr.Markdown("", elem_classes=["stop-status"], visible=False)
with gr.Row(visible=True) as section1_row:
with gr.Column():
folder_input = gr.File(
label="Upload Folder",
file_count="directory",
type="filepath"
)
with gr.Column():
prompt_input = gr.Textbox(
label="Enter your prompt here",
placeholder="Type your prompt...",
lines=3
)
with gr.Column():
submit_btn = gr.Button("Proceed", variant="primary")
# Progress indicator for section 1
with gr.Row(visible=True) as section1_progress_row:
section1_progress_message = gr.Markdown("", elem_classes=["progress"], visible=False)
# Section 2: Edit Prompt and Rerun Controls (separate section)
with gr.Row(visible=False) as section2_prompt_row:
with gr.Column():
with gr.Row():
prompt_input_section2 = gr.Textbox(
label="Edit Prompt",
placeholder="Modify your prompt here...",
lines=2,
scale=4
)
rerun_btn = gr.Button("πŸ”„ Rerun", variant="secondary", size="lg", scale=1)
# Section 3: Results Display
with gr.Row(visible=False) as section3_results_row:
error_message = gr.Textbox(label="Error Message", visible=False)
with gr.Column(scale=1):
image_preview = gr.Image(label="Selected Image", height=270, width=480)
model_output_display = gr.Textbox(
label="Model Output for Selected Image",
placeholder="Select a row from the table to see model output...",
interactive=False,
lines=3
)
with gr.Column(scale=2):
with gr.Row():
gr.HTML("") # Empty space to push button to right
download_results_btn = gr.Button("πŸ“₯ CSV", size="sm", scale=1)
results_csv_output = gr.File(label="", visible=True, scale=1, show_label=False)
results_table = gr.Dataframe(
headers=["S.No", "Image Name", "Ground Truth", "Binary Output", "Model Output"],
label="Results",
interactive=True, # Make it editable for ground truth input
col_count=(5, "fixed")
)
# Generate Metrics button
with gr.Row(visible=False) as section3_submit_row:
with gr.Column():
submit_results_btn = gr.Button("Generate Metrics", variant="primary", size="lg")
# Progress indicator row
with gr.Row(visible=False) as progress_row:
progress_message = gr.Markdown("", elem_classes=["progress"])
# Section 4: Metrics and confusion matrix
with gr.Row(visible=False) as section4_metrics_row:
with gr.Column(scale=2):
confusion_matrix_plot = gr.Image(
label="Confusion Matrix"
)
with gr.Column(scale=2):
accuracy_table = gr.Dataframe(
label="Performance Metrics",
interactive=False
)
confusion_matrix_table = gr.Dataframe(
label="Confusion Matrix Table",
interactive=False
)
# State to store folder path
folder_path_state = gr.State()
folder_input.change(
fn=lambda x: x,
inputs=[folder_input],
outputs=[folder_path_state]
)
# Event handlers
submit_btn.click(
fn=self.process_input_ui,
inputs=[folder_input, prompt_input, quantization_dropdown, model_dropdown],
outputs=[section1_row, section2_prompt_row, section3_results_row, error_message, results_table, image_preview, results_table, section3_submit_row, section4_metrics_row, section1_progress_message, prompt_input_section2, stop_status]
)
results_table.select(
fn=self.update_image_preview,
inputs=[results_table, folder_path_state],
outputs=[image_preview, model_output_display]
)
submit_results_btn.click(
fn=self.submit_and_show_metrics,
inputs=[results_table],
outputs=[results_table, results_table, accuracy_table, confusion_matrix_plot, confusion_matrix_table, section4_metrics_row, progress_row, progress_message]
)
download_results_btn.click(
fn=self.download_results_csv,
inputs=[results_table],
outputs=[results_csv_output]
)
rerun_btn.click(
fn=self.rerun_ui,
inputs=[results_table, prompt_input_section2, quantization_dropdown, model_dropdown],
outputs=[results_table, accuracy_table, confusion_matrix_plot, confusion_matrix_table,
section1_row, section2_prompt_row, section3_results_row, section4_metrics_row, section3_submit_row, progress_row, progress_message, model_output_display]
)
# Model change handler to update status
model_dropdown.change(
fn=self.on_model_change,
inputs=[model_dropdown, quantization_dropdown],
outputs=[model_status]
)
quantization_dropdown.change(
fn=self.on_model_change,
inputs=[model_dropdown, quantization_dropdown],
outputs=[model_status]
)
# Stop button click handler
stop_btn.click(
fn=self.handle_stop_button,
inputs=[],
outputs=[stop_status, stop_status]
)
return demo
def launch(self, **kwargs):
"""Launch the Gradio application."""
demo = self.create_interface()
return demo.launch(**kwargs)