Spaces:
Sleeping
Sleeping
import math | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoConfig | |
from models import InternVL3 | |
from payload_model import PayloadModel | |
from models.misc_utils import get_images_using_bbox, get_whole_image | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD) | |
]) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
i * j <= max_num and i * j >= min_num) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def load_image(pil_image, input_size=448, max_num=12): | |
pil_image = pil_image.convert('RGB') | |
# pil_image = convert_base64_to_pil(image) | |
transform = build_transform(input_size=input_size) | |
images = dynamic_preprocess(pil_image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(image) for image in images] | |
pixel_values = torch.stack(pixel_values) | |
pixel_values = pixel_values.to(torch.bfloat16) | |
if torch.cuda.is_available(): | |
pixel_values = pixel_values.to("cuda") | |
return pixel_values | |
def split_model(model_name): | |
device_map = {} | |
world_size = torch.cuda.device_count() | |
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
num_layers = config.llm_config.num_hidden_layers | |
# Since the first GPU will be used for ViT, treat it as half a GPU. | |
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) | |
num_layers_per_gpu = [num_layers_per_gpu] * world_size | |
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) | |
layer_cnt = 0 | |
for i, num_layer in enumerate(num_layers_per_gpu): | |
for j in range(num_layer): | |
device_map[f'language_model.model.layers.{layer_cnt}'] = i | |
layer_cnt += 1 | |
device_map['vision_model'] = 0 | |
device_map['mlp1'] = 0 | |
device_map['language_model.model.tok_embeddings'] = 0 | |
device_map['language_model.model.embed_tokens'] = 0 | |
device_map['language_model.output'] = 0 | |
device_map['language_model.model.norm'] = 0 | |
device_map['language_model.model.rotary_emb'] = 0 | |
device_map['language_model.lm_head'] = 0 | |
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 | |
return device_map | |
async def internvl_inference(model: InternVL3, payload: PayloadModel): | |
try: | |
if payload.input_utilization_mode == "bbox": | |
images = get_images_using_bbox(payload) | |
else: | |
images = get_whole_image(payload) | |
except Exception as e: | |
raise Exception(f"Error: {e}") | |
prompt_keyword = payload.prompt | |
prompt_eval_mode = payload.prompt_eval_mode | |
return await model(images, prompt_keyword, prompt_eval_mode) |