Spaces:
Sleeping
Sleeping
# Data Source: https://public.tableau.com/app/profile/federal.trade.commission/viz/FraudandIDTheftMaps/AllReportsbyState | |
# US State Boundaries: https://public.opendatasoft.com/explore/dataset/us-state-boundaries/export/ | |
import streamlit as st | |
import pandas as pd | |
import folium | |
from streamlit_folium import st_folium | |
APP_TITLE = 'Fraud and Identity Theft Report' | |
APP_SUB_TITLE = 'Source: Federal Trade Commission' | |
def display_time_filters(df): | |
year_list = list(df['Year'].unique()) | |
year_list.sort() | |
year = st.sidebar.selectbox('Year', year_list, len(year_list)-1) | |
quarter = st.sidebar.radio('Quarter', [1, 2, 3, 4]) | |
st.header(f'{year} Q{quarter}') | |
return year, quarter | |
def display_state_filter(df, state_name): | |
state_list = [''] + list(df['State Name'].unique()) | |
state_list.sort() | |
state_index = state_list.index(state_name) if state_name and state_name in state_list else 0 | |
return st.sidebar.selectbox('State', state_list, state_index) | |
def display_report_type_filter(): | |
return st.sidebar.radio('Report Type', ['Fraud', 'Other']) | |
def display_map(df, year, quarter): | |
df = df[(df['Year'] == year) & (df['Quarter'] == quarter)] | |
map = folium.Map(location=[38, -96.5], zoom_start=4, scrollWheelZoom=False, tiles='CartoDB positron') | |
choropleth = folium.Choropleth( | |
geo_data='data/us-state-boundaries.geojson', | |
data=df, | |
columns=('State Name', 'State Total Reports Quarter'), | |
key_on='feature.properties.name', | |
line_opacity=0.8, | |
highlight=True | |
) | |
choropleth.geojson.add_to(map) | |
df_indexed = df.set_index('State Name') | |
for feature in choropleth.geojson.data['features']: | |
state_name = feature['properties']['name'] | |
feature['properties']['population'] = 'Population: ' + '{:,}'.format(df_indexed.loc[state_name, 'State Pop'][0]) if state_name in list(df_indexed.index) else '' | |
feature['properties']['per_100k'] = 'Reports/100K Population: ' + str(round(df_indexed.loc[state_name, 'Reports per 100K-F&O together'][0])) if state_name in list(df_indexed.index) else '' | |
choropleth.geojson.add_child( | |
folium.features.GeoJsonTooltip(['name', 'population', 'per_100k'], labels=False) | |
) | |
st_map = st_folium(map, width=700, height=450) | |
state_name = '' | |
if st_map['last_active_drawing']: | |
state_name = st_map['last_active_drawing']['properties']['name'] | |
return state_name | |
def display_fraud_facts(df, year, quarter, report_type, state_name, field, title, string_format='${:,}', is_median=False): | |
df = df[(df['Year'] == year) & (df['Quarter'] == quarter)] | |
df = df[df['Report Type'] == report_type] | |
if state_name: | |
df = df[df['State Name'] == state_name] | |
df.drop_duplicates(inplace=True) | |
if is_median: | |
total = df[field].sum() / len(df[field]) if len(df) else 0 | |
else: | |
total = df[field].sum() | |
st.metric(title, string_format.format(round(total))) | |
def main(): | |
st.set_page_config(APP_TITLE) | |
st.title(APP_TITLE) | |
st.caption(APP_SUB_TITLE) | |
#Load Data | |
df_continental = pd.read_csv('data/AxS-Continental_Full Data_data.csv') | |
df_fraud = pd.read_csv('data/AxS-Fraud Box_Full Data_data.csv') | |
df_median = pd.read_csv('data/AxS-Median Box_Full Data_data.csv') | |
df_loss = pd.read_csv('data/AxS-Losses Box_Full Data_data.csv') | |
#Display Filters and Map | |
year, quarter = display_time_filters(df_continental) | |
state_name = display_map(df_continental, year, quarter) | |
state_name = display_state_filter(df_continental, state_name) | |
report_type = display_report_type_filter() | |
#Display Metrics | |
st.subheader(f'{state_name} {report_type} Facts') | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
display_fraud_facts(df_fraud, year, quarter, report_type, state_name, 'State Fraud/Other Count', f'# of {report_type} Reports', string_format='{:,}') | |
with col2: | |
display_fraud_facts(df_median, year, quarter, report_type, state_name, 'Overall Median Losses Qtr', 'Median $ Loss', is_median=True) | |
with col3: | |
display_fraud_facts(df_loss, year, quarter, report_type, state_name, 'Total Losses', 'Total $ Loss') | |
if __name__ == "__main__": | |
main() |