mapping / app.py
destiratnakomala's picture
Upload 3 files
6d94fac verified
# Data Source: https://public.tableau.com/app/profile/federal.trade.commission/viz/FraudandIDTheftMaps/AllReportsbyState
# US State Boundaries: https://public.opendatasoft.com/explore/dataset/us-state-boundaries/export/
import streamlit as st
import pandas as pd
import folium
from streamlit_folium import st_folium
APP_TITLE = 'Fraud and Identity Theft Report'
APP_SUB_TITLE = 'Source: Federal Trade Commission'
def display_time_filters(df):
year_list = list(df['Year'].unique())
year_list.sort()
year = st.sidebar.selectbox('Year', year_list, len(year_list)-1)
quarter = st.sidebar.radio('Quarter', [1, 2, 3, 4])
st.header(f'{year} Q{quarter}')
return year, quarter
def display_state_filter(df, state_name):
state_list = [''] + list(df['State Name'].unique())
state_list.sort()
state_index = state_list.index(state_name) if state_name and state_name in state_list else 0
return st.sidebar.selectbox('State', state_list, state_index)
def display_report_type_filter():
return st.sidebar.radio('Report Type', ['Fraud', 'Other'])
def display_map(df, year, quarter):
df = df[(df['Year'] == year) & (df['Quarter'] == quarter)]
map = folium.Map(location=[38, -96.5], zoom_start=4, scrollWheelZoom=False, tiles='CartoDB positron')
choropleth = folium.Choropleth(
geo_data='data/us-state-boundaries.geojson',
data=df,
columns=('State Name', 'State Total Reports Quarter'),
key_on='feature.properties.name',
line_opacity=0.8,
highlight=True
)
choropleth.geojson.add_to(map)
df_indexed = df.set_index('State Name')
for feature in choropleth.geojson.data['features']:
state_name = feature['properties']['name']
feature['properties']['population'] = 'Population: ' + '{:,}'.format(df_indexed.loc[state_name, 'State Pop'][0]) if state_name in list(df_indexed.index) else ''
feature['properties']['per_100k'] = 'Reports/100K Population: ' + str(round(df_indexed.loc[state_name, 'Reports per 100K-F&O together'][0])) if state_name in list(df_indexed.index) else ''
choropleth.geojson.add_child(
folium.features.GeoJsonTooltip(['name', 'population', 'per_100k'], labels=False)
)
st_map = st_folium(map, width=700, height=450)
state_name = ''
if st_map['last_active_drawing']:
state_name = st_map['last_active_drawing']['properties']['name']
return state_name
def display_fraud_facts(df, year, quarter, report_type, state_name, field, title, string_format='${:,}', is_median=False):
df = df[(df['Year'] == year) & (df['Quarter'] == quarter)]
df = df[df['Report Type'] == report_type]
if state_name:
df = df[df['State Name'] == state_name]
df.drop_duplicates(inplace=True)
if is_median:
total = df[field].sum() / len(df[field]) if len(df) else 0
else:
total = df[field].sum()
st.metric(title, string_format.format(round(total)))
def main():
st.set_page_config(APP_TITLE)
st.title(APP_TITLE)
st.caption(APP_SUB_TITLE)
#Load Data
df_continental = pd.read_csv('data/AxS-Continental_Full Data_data.csv')
df_fraud = pd.read_csv('data/AxS-Fraud Box_Full Data_data.csv')
df_median = pd.read_csv('data/AxS-Median Box_Full Data_data.csv')
df_loss = pd.read_csv('data/AxS-Losses Box_Full Data_data.csv')
#Display Filters and Map
year, quarter = display_time_filters(df_continental)
state_name = display_map(df_continental, year, quarter)
state_name = display_state_filter(df_continental, state_name)
report_type = display_report_type_filter()
#Display Metrics
st.subheader(f'{state_name} {report_type} Facts')
col1, col2, col3 = st.columns(3)
with col1:
display_fraud_facts(df_fraud, year, quarter, report_type, state_name, 'State Fraud/Other Count', f'# of {report_type} Reports', string_format='{:,}')
with col2:
display_fraud_facts(df_median, year, quarter, report_type, state_name, 'Overall Median Losses Qtr', 'Median $ Loss', is_median=True)
with col3:
display_fraud_facts(df_loss, year, quarter, report_type, state_name, 'Total Losses', 'Total $ Loss')
if __name__ == "__main__":
main()