Spaces:
Sleeping
Sleeping
Hugo Flores
commited on
Commit
•
fc839a6
1
Parent(s):
5582d2e
refactor
Browse files- .gitignore +2 -0
- vampnet/modules/activations.py +55 -0
- vampnet/modules/{modules.py → layers.py} +0 -19
- vampnet/modules/transformer.py +6 -57
.gitignore
CHANGED
@@ -171,3 +171,5 @@ archived/
|
|
171 |
scratch/
|
172 |
|
173 |
runs-archive
|
|
|
|
|
|
171 |
scratch/
|
172 |
|
173 |
runs-archive
|
174 |
+
lyrebird-audiotools
|
175 |
+
lyrebird-audio-codec
|
vampnet/modules/activations.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from einops import rearrange
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
class NewGELU(nn.Module):
|
10 |
+
"""
|
11 |
+
Implementation of the GELU activation function currently in Google BERT repo
|
12 |
+
(identical to OpenAI GPT). Also see the Gaussian Error Linear Units
|
13 |
+
paper: https://arxiv.org/abs/1606.08415
|
14 |
+
"""
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
return (
|
18 |
+
0.5
|
19 |
+
* x
|
20 |
+
* (
|
21 |
+
1.0
|
22 |
+
+ torch.tanh(
|
23 |
+
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))
|
24 |
+
)
|
25 |
+
)
|
26 |
+
)
|
27 |
+
|
28 |
+
class GatedGELU(nn.Module):
|
29 |
+
def __init__(self):
|
30 |
+
super().__init__()
|
31 |
+
self.gelu = NewGELU()
|
32 |
+
|
33 |
+
def forward(self, x, dim: int = -1):
|
34 |
+
p1, p2 = x.chunk(2, dim=dim)
|
35 |
+
return p1 * self.gelu(p2)
|
36 |
+
|
37 |
+
class Snake1d(nn.Module):
|
38 |
+
def __init__(self, channels):
|
39 |
+
super().__init__()
|
40 |
+
self.alpha = nn.Parameter(torch.ones(channels))
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
return x + (self.alpha + 1e-9).reciprocal() * torch.sin(self.alpha * x).pow(2)
|
44 |
+
|
45 |
+
def get_activation(name: str = "relu"):
|
46 |
+
if name == "relu":
|
47 |
+
return nn.ReLU
|
48 |
+
elif name == "gelu":
|
49 |
+
return NewGELU
|
50 |
+
elif name == "geglu":
|
51 |
+
return GatedGELU
|
52 |
+
elif name == "snake":
|
53 |
+
return Snake1d
|
54 |
+
else:
|
55 |
+
raise ValueError(f"Unrecognized activation {name}")
|
vampnet/modules/{modules.py → layers.py}
RENAMED
@@ -26,25 +26,6 @@ def recurse_children(module, fn):
|
|
26 |
yield fn(child)
|
27 |
|
28 |
|
29 |
-
# Scripting this brings model speed up 1.4x
|
30 |
-
@torch.jit.script
|
31 |
-
def snake(x, alpha):
|
32 |
-
shape = x.shape
|
33 |
-
x = x.reshape(shape[0], shape[1], -1)
|
34 |
-
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
|
35 |
-
x = x.reshape(shape)
|
36 |
-
return x
|
37 |
-
|
38 |
-
|
39 |
-
class Snake1d(nn.Module):
|
40 |
-
def __init__(self, channels):
|
41 |
-
super().__init__()
|
42 |
-
self.alpha = nn.Parameter(torch.ones(1, channels, 1))
|
43 |
-
|
44 |
-
def forward(self, x):
|
45 |
-
return snake(x, self.alpha)
|
46 |
-
|
47 |
-
|
48 |
def WNConv1d(*args, **kwargs):
|
49 |
return weight_norm(nn.Conv1d(*args, **kwargs))
|
50 |
|
|
|
26 |
yield fn(child)
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def WNConv1d(*args, **kwargs):
|
30 |
return weight_norm(nn.Conv1d(*args, **kwargs))
|
31 |
|
vampnet/modules/transformer.py
CHANGED
@@ -7,10 +7,11 @@ import torch.nn.functional as F
|
|
7 |
from einops import rearrange
|
8 |
|
9 |
from .base import VampBase
|
10 |
-
from .
|
11 |
-
from .
|
12 |
-
from .
|
13 |
-
from .
|
|
|
14 |
|
15 |
|
16 |
class RMSNorm(nn.Module):
|
@@ -37,58 +38,6 @@ class RMSNorm(nn.Module):
|
|
37 |
return self.weight * x
|
38 |
|
39 |
|
40 |
-
def get_activation(name: str = "relu"):
|
41 |
-
if name == "relu":
|
42 |
-
return nn.ReLU
|
43 |
-
elif name == "gelu":
|
44 |
-
return NewGELU
|
45 |
-
elif name == "geglu":
|
46 |
-
return GatedGELU
|
47 |
-
elif name == "snake":
|
48 |
-
return Snake1d
|
49 |
-
else:
|
50 |
-
raise ValueError(f"Unrecognized activation {name}")
|
51 |
-
|
52 |
-
|
53 |
-
class NewGELU(nn.Module):
|
54 |
-
"""
|
55 |
-
Implementation of the GELU activation function currently in Google BERT repo
|
56 |
-
(identical to OpenAI GPT). Also see the Gaussian Error Linear Units
|
57 |
-
paper: https://arxiv.org/abs/1606.08415
|
58 |
-
"""
|
59 |
-
|
60 |
-
def forward(self, x):
|
61 |
-
return (
|
62 |
-
0.5
|
63 |
-
* x
|
64 |
-
* (
|
65 |
-
1.0
|
66 |
-
+ torch.tanh(
|
67 |
-
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))
|
68 |
-
)
|
69 |
-
)
|
70 |
-
)
|
71 |
-
|
72 |
-
|
73 |
-
class GatedGELU(nn.Module):
|
74 |
-
def __init__(self):
|
75 |
-
super().__init__()
|
76 |
-
self.gelu = NewGELU()
|
77 |
-
|
78 |
-
def forward(self, x, dim: int = -1):
|
79 |
-
p1, p2 = x.chunk(2, dim=dim)
|
80 |
-
return p1 * self.gelu(p2)
|
81 |
-
|
82 |
-
|
83 |
-
class Snake1d(nn.Module):
|
84 |
-
def __init__(self, channels):
|
85 |
-
super().__init__()
|
86 |
-
self.alpha = nn.Parameter(torch.ones(channels))
|
87 |
-
|
88 |
-
def forward(self, x):
|
89 |
-
return x + (self.alpha + 1e-9).reciprocal() * torch.sin(self.alpha * x).pow(2)
|
90 |
-
|
91 |
-
|
92 |
class FeedForward(nn.Module):
|
93 |
def __init__(
|
94 |
self, d_model: int = 512, dropout: float = 0.1, activation: str = "geglu"
|
@@ -572,7 +521,7 @@ class VampNet(VampBase):
|
|
572 |
|
573 |
if __name__ == "__main__":
|
574 |
# import argbind
|
575 |
-
from .
|
576 |
|
577 |
VampNet = argbind.bind(VampNet)
|
578 |
|
|
|
7 |
from einops import rearrange
|
8 |
|
9 |
from .base import VampBase
|
10 |
+
from .activations import get_activation
|
11 |
+
from .layers import CodebookEmbedding
|
12 |
+
from .layers import FiLM
|
13 |
+
from .layers import SequentialWithFiLM
|
14 |
+
from .layers import WNConv1d
|
15 |
|
16 |
|
17 |
class RMSNorm(nn.Module):
|
|
|
38 |
return self.weight * x
|
39 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
class FeedForward(nn.Module):
|
42 |
def __init__(
|
43 |
self, d_model: int = 512, dropout: float = 0.1, activation: str = "geglu"
|
|
|
521 |
|
522 |
if __name__ == "__main__":
|
523 |
# import argbind
|
524 |
+
from .layers import num_params
|
525 |
|
526 |
VampNet = argbind.bind(VampNet)
|
527 |
|