vampnet / scripts /exp /experiment.py
pseeth's picture
Duplicate from hugggof/vampnet
c91e8cc
raw
history blame
6.85 kB
from pathlib import Path
import random
from typing import List
import tempfile
import subprocess
import argbind
from tqdm import tqdm
import torch
from vampnet.interface import Interface
from vampnet import mask as pmask
import audiotools as at
Interface: Interface = argbind.bind(Interface)
def calculate_bitrate(
interface, num_codebooks,
downsample_factor
):
bit_width = 10
sr = interface.codec.sample_rate
hop = interface.codec.hop_size
rate = (sr / hop) * ((bit_width * num_codebooks) / downsample_factor)
return rate
def baseline(sig, interface):
return interface.preprocess(sig)
def reconstructed(sig, interface):
return interface.to_signal(
interface.encode(sig)
)
def coarse2fine(sig, interface):
z = interface.encode(sig)
z = z[:, :interface.c2f.n_conditioning_codebooks, :]
z = interface.coarse_to_fine(z)
return interface.to_signal(z)
class CoarseCond:
def __init__(self, num_conditioning_codebooks, downsample_factor):
self.num_conditioning_codebooks = num_conditioning_codebooks
self.downsample_factor = downsample_factor
def __call__(self, sig, interface):
z = interface.encode(sig)
mask = pmask.full_mask(z)
mask = pmask.codebook_unmask(mask, self.num_conditioning_codebooks)
mask = pmask.periodic_mask(mask, self.downsample_factor)
zv = interface.coarse_vamp(z, mask)
zv = interface.coarse_to_fine(zv)
return interface.to_signal(zv)
def opus(sig, interface, bitrate=128):
sig = interface.preprocess(sig)
with tempfile.NamedTemporaryFile(suffix=".wav") as f:
sig.write(f.name)
opus_name = Path(f.name).with_suffix(".opus")
# convert to opus
cmd = [
"ffmpeg", "-y", "-i", f.name,
"-c:a", "libopus",
"-b:a", f"{bitrate}",
opus_name
]
subprocess.run(cmd, check=True)
# convert back to wav
output_name = Path(f"{f.name}-opus").with_suffix(".wav")
cmd = [
"ffmpeg", "-y", "-i", opus_name,
output_name
]
subprocess.run(cmd, check=True)
sig = at.AudioSignal(
output_name,
sample_rate=sig.sample_rate
)
return sig
def mask_ratio_1_step(ratio=1.0):
def wrapper(sig, interface):
z = interface.encode(sig)
mask = pmask.linear_random(z, ratio)
zv = interface.coarse_vamp(
z,
mask,
sampling_steps=1,
)
return interface.to_signal(zv)
return wrapper
def num_sampling_steps(num_steps=1):
def wrapper(sig, interface: Interface):
z = interface.encode(sig)
mask = pmask.periodic_mask(z, 16)
zv = interface.coarse_vamp(
z,
mask,
sampling_steps=num_steps,
)
zv = interface.coarse_to_fine(zv)
return interface.to_signal(zv)
return wrapper
def beat_mask(ctx_time):
def wrapper(sig, interface):
beat_mask = interface.make_beat_mask(
sig,
before_beat_s=ctx_time/2,
after_beat_s=ctx_time/2,
invert=True
)
z = interface.encode(sig)
zv = interface.coarse_vamp(
z, beat_mask
)
zv = interface.coarse_to_fine(zv)
return interface.to_signal(zv)
return wrapper
def inpaint(ctx_time):
def wrapper(sig, interface: Interface):
z = interface.encode(sig)
mask = pmask.inpaint(z, interface.s2t(ctx_time), interface.s2t(ctx_time))
zv = interface.coarse_vamp(z, mask)
zv = interface.coarse_to_fine(zv)
return interface.to_signal(zv)
return wrapper
def token_noise(noise_amt):
def wrapper(sig, interface: Interface):
z = interface.encode(sig)
mask = pmask.random(z, noise_amt)
z = torch.where(
mask,
torch.randint_like(z, 0, interface.coarse.vocab_size),
z
)
return interface.to_signal(z)
return wrapper
EXP_REGISTRY = {}
EXP_REGISTRY["gen-compression"] = {
"baseline": baseline,
"reconstructed": reconstructed,
"coarse2fine": coarse2fine,
**{
f"{n}_codebooks_downsampled_{x}x": CoarseCond(num_conditioning_codebooks=n, downsample_factor=x)
for (n, x) in (
(1, 1), # 1 codebook, no downsampling
(4, 4), # 4 codebooks, downsampled 4x
(4, 16), # 4 codebooks, downsampled 16x
(4, 32), # 4 codebooks, downsampled 16x
)
},
**{
f"token_noise_{x}": mask_ratio_1_step(ratio=x)
for x in [0.25, 0.5, 0.75]
},
}
EXP_REGISTRY["sampling-steps"] = {
# "codec": reconstructed,
**{f"steps_{n}": num_sampling_steps(n) for n in [1, 4, 12, 36, 64, 72]},
}
EXP_REGISTRY["musical-sampling"] = {
**{f"beat_mask_{t}": beat_mask(t) for t in [0.075]},
**{f"inpaint_{t}": inpaint(t) for t in [0.5, 1.0,]}, # multiply these by 2 (they go left and right)
}
@argbind.bind(without_prefix=True)
def main(
sources=[
"/media/CHONK/hugo/spotdl/val",
],
output_dir: str = "./samples",
max_excerpts: int = 2000,
exp_type: str = "gen-compression",
seed: int = 0,
ext: str = [".mp3"],
):
at.util.seed(seed)
interface = Interface()
output_dir = Path(output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
from audiotools.data.datasets import AudioLoader, AudioDataset
loader = AudioLoader(sources=sources, shuffle_state=seed, ext=ext)
dataset = AudioDataset(loader,
sample_rate=interface.codec.sample_rate,
duration=interface.coarse.chunk_size_s,
n_examples=max_excerpts,
without_replacement=True,
)
if exp_type in EXP_REGISTRY:
SAMPLE_CONDS = EXP_REGISTRY[exp_type]
else:
raise ValueError(f"Unknown exp_type {exp_type}")
indices = list(range(max_excerpts))
random.shuffle(indices)
for i in tqdm(indices):
# if all our files are already there, skip
done = []
for name in SAMPLE_CONDS:
o_dir = Path(output_dir) / name
done.append((o_dir / f"{i}.wav").exists())
if all(done):
continue
sig = dataset[i]["signal"]
results = {
name: cond(sig, interface).cpu()
for name, cond in SAMPLE_CONDS.items()
}
for name, sig in results.items():
o_dir = Path(output_dir) / name
o_dir.mkdir(exist_ok=True, parents=True)
sig.write(o_dir / f"{i}.wav")
if __name__ == "__main__":
args = argbind.parse_args()
with argbind.scope(args):
main()