Spaces:
Running
on
Zero
Running
on
Zero
####################################################################### | |
# Name: test_worker.py | |
# | |
# - Runs robot in environment using RL Planner | |
####################################################################### | |
from .test_parameter import * | |
import imageio | |
import os | |
import copy | |
import numpy as np | |
import torch | |
from time import time | |
from pathlib import Path | |
from skimage.transform import resize | |
from taxabind_avs.satbind.kmeans_clustering import CombinedSilhouetteInertiaClusterer | |
from .env import Env | |
from .robot import Robot | |
np.seterr(invalid='raise', divide='raise') | |
class TestWorker: | |
def __init__(self, meta_agent_id, n_agent, policy_net, global_step, device='cuda', greedy=False, save_image=False, clip_seg_tta=None): | |
self.device = device | |
self.greedy = greedy | |
self.n_agent = n_agent | |
self.metaAgentID = meta_agent_id | |
self.global_step = global_step | |
self.k_size = K_SIZE | |
self.save_image = save_image | |
self.clip_seg_tta = clip_seg_tta | |
self.execute_tta = EXECUTE_TTA # Added to interface with app.py | |
self.env = Env(map_index=self.global_step, n_agent=n_agent, k_size=self.k_size, plot=save_image, test=True) | |
self.local_policy_net = policy_net | |
self.robot_list = [] | |
self.all_robot_positions = [] | |
for i in range(self.n_agent): | |
robot_position = self.env.start_positions[i] | |
robot = Robot(robot_id=i, position=robot_position, plot=save_image) | |
self.robot_list.append(robot) | |
self.all_robot_positions.append(robot_position) | |
self.perf_metrics = dict() | |
self.bad_mask_init = False | |
# NOTE: Option to override gifs_path to interface with app.py | |
self.gifs_path = GIFS_PATH | |
# NOTE: updated due to app.py (hf does not allow heatmap to persist) | |
if LOAD_AVS_BENCH: | |
if clip_seg_tta is not None: | |
heatmap, heatmap_unnormalized, heatmap_unnormalized_initial, patch_embeds = self.clip_seg_tta.reset(sample_idx=self.global_step) | |
self.clip_seg_tta.heatmap = heatmap | |
self.clip_seg_tta.heatmap_unnormalized = heatmap_unnormalized | |
self.clip_seg_tta.heatmap_unnormalized_initial = heatmap_unnormalized_initial | |
self.clip_seg_tta.patch_embeds = patch_embeds | |
# Override target positions in env | |
self.env.target_positions = [(pose[1], pose[0]) for pose in self.clip_seg_tta.target_positions] | |
# Override segmentation mask | |
if not USE_CLIP_PREDS and OVERRIDE_MASK_DIR != "": | |
score_mask_path = os.path.join(OVERRIDE_MASK_DIR, self.clip_seg_tta.gt_mask_name) | |
print("score_mask_path: ", score_mask_path) | |
if os.path.exists(score_mask_path): | |
self.env.segmentation_mask = self.env.import_segmentation_mask(score_mask_path) | |
self.env.begin(self.env.map_start_position) | |
else: | |
print(f"\n\n{RED}ERROR: Trying to override, but score mask not found at path:{NC} ", score_mask_path) | |
self.bad_mask_init = True | |
# Save clustered embeds from sat encoder | |
if USE_CLIP_PREDS: | |
self.kmeans_clusterer = CombinedSilhouetteInertiaClusterer( | |
k_min=1, | |
k_max=8, | |
k_avg_max=4, | |
silhouette_threshold=0.15, | |
relative_threshold=0.15, | |
random_state=0, | |
min_patch_size=5, | |
n_smooth_iter=2, | |
ignore_label=-1, | |
plot=self.save_image, | |
gifs_dir = GIFS_PATH | |
) | |
# Generate kmeans clusters | |
self.kmeans_sat_embeds_clusters = self.kmeans_clusterer.fit_predict( | |
patch_embeds=self.clip_seg_tta.patch_embeds, | |
map_shape=(CLIP_GRIDS_DIMS[0], CLIP_GRIDS_DIMS[1]), | |
) | |
print("Chosen k:", self.kmeans_clusterer.final_k) | |
# if EXECUTE_TTA: | |
# print("Will execute TTA...") | |
# Define Poisson TTA params | |
self.step_since_tta = 0 | |
self.steps_to_first_tgt = None | |
self.steps_to_mid_tgt = None | |
self.steps_to_last_tgt = None | |
def run_episode(self, curr_episode): | |
# Return all metrics as None if faulty mask init | |
if self.bad_mask_init: | |
self.perf_metrics['tax'] = None | |
self.perf_metrics['travel_dist'] = None | |
self.perf_metrics['travel_steps'] = None | |
self.perf_metrics['steps_to_first_tgt'] = None | |
self.perf_metrics['steps_to_mid_tgt'] = None | |
self.perf_metrics['steps_to_last_tgt'] = None | |
self.perf_metrics['explored_rate'] = None | |
self.perf_metrics['targets_found'] = None | |
self.perf_metrics['targets_total'] = None | |
self.perf_metrics['kmeans_k'] = None | |
self.perf_metrics['tgts_gt_score'] = None | |
self.perf_metrics['clip_inference_time'] = None | |
self.perf_metrics['tta_time'] = None | |
self.perf_metrics['success_rate'] = None | |
return | |
eps_start = time() | |
done = False | |
for robot_id, deciding_robot in enumerate(self.robot_list): | |
deciding_robot.observations = self.get_observations(deciding_robot.robot_position) | |
if LOAD_AVS_BENCH and USE_CLIP_PREDS: | |
if NUM_COORDS_WIDTH != CLIP_GRIDS_DIMS[0] or NUM_COORDS_HEIGHT != CLIP_GRIDS_DIMS[1]: # If heatmap is resized from clip original dims | |
heatmap = self.convert_heatmap_resolution(self.clip_seg_tta.heatmap, full_dims=(512, 512), new_dims=(NUM_COORDS_WIDTH, NUM_COORDS_HEIGHT)) | |
self.env.segmentation_info_mask = np.expand_dims(heatmap.T.flatten(), axis=1) | |
unnormalized_heatmap = self.convert_heatmap_resolution(self.clip_seg_tta.heatmap_unnormalized, full_dims=(512, 512), new_dims=(NUM_COORDS_WIDTH, NUM_COORDS_HEIGHT)) | |
self.env.segmentation_info_mask_unnormalized = np.expand_dims(unnormalized_heatmap.T.flatten(), axis=1) | |
print("Resized heatmap to", NUM_COORDS_WIDTH, "x", NUM_COORDS_HEIGHT) | |
else: | |
self.env.segmentation_info_mask = np.expand_dims(self.clip_seg_tta.heatmap.T.flatten(), axis=1) | |
self.env.segmentation_info_mask_unnormalized = np.expand_dims(self.clip_seg_tta.heatmap_unnormalized.T.flatten(), axis=1) | |
### Run episode ### | |
for step in range(NUM_EPS_STEPS): | |
next_position_list = [] | |
dist_list = [] | |
travel_dist_list = [] | |
dist_array = np.zeros((self.n_agent, 1)) | |
for robot_id, deciding_robot in enumerate(self.robot_list): | |
observations = deciding_robot.observations | |
### Forward pass through policy to get next position ### | |
next_position, action_index = self.select_node(observations) | |
dist = np.linalg.norm(next_position - deciding_robot.robot_position) | |
### Log results of action (e.g. distance travelled) ### | |
dist_array[robot_id] = dist | |
dist_list.append(dist) | |
travel_dist_list.append(deciding_robot.travel_dist) | |
next_position_list.append(next_position) | |
self.all_robot_positions[robot_id] = next_position | |
arriving_sequence = np.argsort(dist_list) | |
next_position_list = np.array(next_position_list) | |
dist_list = np.array(dist_list) | |
travel_dist_list = np.array(travel_dist_list) | |
next_position_list = next_position_list[arriving_sequence] | |
dist_list = dist_list[arriving_sequence] | |
travel_dist_list = travel_dist_list[arriving_sequence] | |
### Take Action (Deconflict if 2 agents choose the same target position) ### | |
next_position_list, dist_list = self.solve_conflict(arriving_sequence, next_position_list, dist_list) | |
reward_list, done = self.env.multi_robot_step(next_position_list, dist_list, travel_dist_list) | |
### Update observations + rewards from action ### | |
for reward, robot_id in zip(reward_list, arriving_sequence): | |
robot = self.robot_list[robot_id] | |
robot.save_trajectory_coords(self.env.find_index_from_coords(robot.robot_position), self.env.num_new_targets_found) | |
# # TTA Update via Poisson Test (with KMeans clustering stats) | |
if LOAD_AVS_BENCH and USE_CLIP_PREDS and self.execute_tta: | |
self.poisson_tta_update(robot, self.global_step, step) | |
robot.observations = self.get_observations(robot.robot_position) | |
robot.save_reward_done(reward, done) | |
# Update metrics | |
self.log_metrics(step=step) | |
### Save a frame to generate gif of robot trajectories ### | |
if self.save_image: | |
robots_route = [] | |
for robot in self.robot_list: | |
robots_route.append([robot.xPoints, robot.yPoints]) | |
if not os.path.exists(self.gifs_path): | |
os.makedirs(self.gifs_path) | |
if LOAD_AVS_BENCH: | |
# NOTE: Replaced since using app.py | |
self.env.plot_heatmap(self.gifs_path, step, max(travel_dist_list), robots_route) | |
if done: | |
break | |
if LOAD_AVS_BENCH: | |
tax = Path(self.clip_seg_tta.gt_mask_name).stem | |
self.perf_metrics['tax'] = " ".join(tax.split("_")[1:]) | |
else: | |
self.perf_metrics['tax'] = None | |
self.perf_metrics['travel_dist'] = max(travel_dist_list) | |
self.perf_metrics['travel_steps'] = step + 1 | |
self.perf_metrics['steps_to_first_tgt'] = self.steps_to_first_tgt | |
self.perf_metrics['steps_to_mid_tgt'] = self.steps_to_mid_tgt | |
self.perf_metrics['steps_to_last_tgt'] = self.steps_to_last_tgt | |
self.perf_metrics['explored_rate'] = self.env.explored_rate | |
self.perf_metrics['targets_found'] = self.env.targets_found_rate | |
self.perf_metrics['targets_total'] = len(self.env.target_positions) | |
if USE_CLIP_PREDS: | |
self.perf_metrics['kmeans_k'] = self.kmeans_clusterer.final_k | |
self.perf_metrics['tgts_gt_score'] = self.clip_seg_tta.tgts_gt_score | |
self.perf_metrics['clip_inference_time'] = self.clip_seg_tta.clip_inference_time | |
self.perf_metrics['tta_time'] = self.clip_seg_tta.tta_time | |
else: | |
self.perf_metrics['kmeans_k'] = None | |
self.perf_metrics['tgts_gt_score'] = None | |
self.perf_metrics['clip_inference_time'] = None | |
self.perf_metrics['tta_time'] = None | |
if FORCE_LOGGING_DONE_TGTS_FOUND and self.env.targets_found_rate == 1.0: | |
self.perf_metrics['success_rate'] = True | |
else: | |
self.perf_metrics['success_rate'] = done | |
# save gif | |
if self.save_image: | |
path = self.gifs_path # NOTE: Set to self.gifs_path since using app.py | |
self.make_gif(path, curr_episode) | |
print(YELLOW, f"[Eps {curr_episode} Completed] Time Taken: {time()-eps_start:.2f}s, Steps: {step+1}", NC) | |
def get_observations(self, robot_position): | |
""" Get robot's sensor observation of environment given position """ | |
current_node_index = self.env.find_index_from_coords(robot_position) | |
current_index = torch.tensor([current_node_index]).unsqueeze(0).unsqueeze(0).to(self.device) # (1,1,1) | |
node_coords = copy.deepcopy(self.env.node_coords) | |
graph = copy.deepcopy(self.env.graph) | |
node_utility = copy.deepcopy(self.env.node_utility) | |
guidepost = copy.deepcopy(self.env.guidepost) | |
segmentation_info_mask = copy.deepcopy(self.env.filtered_seg_info_mask) | |
n_nodes = node_coords.shape[0] | |
node_coords = node_coords / 640 | |
node_utility = node_utility / 50 | |
node_utility_inputs = node_utility.reshape((n_nodes, 1)) | |
occupied_node = np.zeros((n_nodes, 1)) | |
for position in self.all_robot_positions: | |
index = self.env.find_index_from_coords(position) | |
if index == current_index.item(): | |
occupied_node[index] = -1 | |
else: | |
occupied_node[index] = 1 | |
node_inputs = np.concatenate((node_coords, segmentation_info_mask, guidepost), axis=1) | |
node_inputs = torch.FloatTensor(node_inputs).unsqueeze(0).to(self.device) | |
node_padding_mask = None | |
graph = list(graph.values()) | |
edge_inputs = [] | |
for node in graph: | |
node_edges = list(map(int, node)) | |
edge_inputs.append(node_edges) | |
bias_matrix = self.calculate_edge_mask(edge_inputs) | |
edge_mask = torch.from_numpy(bias_matrix).float().unsqueeze(0).to(self.device) | |
for edges in edge_inputs: | |
while len(edges) < self.k_size: | |
edges.append(0) | |
edge_inputs = torch.tensor(edge_inputs).unsqueeze(0).to(self.device) | |
edge_padding_mask = torch.zeros((1, len(edge_inputs), K_SIZE), dtype=torch.int64).to(self.device) | |
one = torch.ones_like(edge_padding_mask, dtype=torch.int64).to(self.device) | |
edge_padding_mask = torch.where(edge_inputs == 0, one, edge_padding_mask) | |
observations = node_inputs, edge_inputs, current_index, node_padding_mask, edge_padding_mask, edge_mask | |
return observations | |
def select_node(self, observations): | |
""" Forward pass through policy to get next position to go to on map """ | |
node_inputs, edge_inputs, current_index, node_padding_mask, edge_padding_mask, edge_mask = observations | |
with torch.no_grad(): | |
logp_list = self.local_policy_net(node_inputs, edge_inputs, current_index, node_padding_mask, edge_padding_mask, edge_mask) | |
if self.greedy: | |
action_index = torch.argmax(logp_list, dim=1).long() | |
else: | |
action_index = torch.multinomial(logp_list.exp(), 1).long().squeeze(1) | |
next_node_index = edge_inputs[:, current_index.item(), action_index.item()] | |
next_position = self.env.node_coords[next_node_index] | |
return next_position, action_index | |
def solve_conflict(self, arriving_sequence, next_position_list, dist_list): | |
""" Deconflict if 2 agents choose the same target position """ | |
for j, [robot_id, next_position] in enumerate(zip(arriving_sequence, next_position_list)): | |
moving_robot = self.robot_list[robot_id] | |
# if next_position[0] + next_position[1] * 1j in (next_position_list[:, 0] + next_position_list[:, 1] * 1j)[:j]: | |
# dist_to_next_position = np.argsort(np.linalg.norm(self.env.node_coords - next_position, axis=1)) | |
# k = 0 | |
# while next_position[0] + next_position[1] * 1j in (next_position_list[:, 0] + next_position_list[:, 1] * 1j)[:j]: | |
# k += 1 | |
# next_position = self.env.node_coords[dist_to_next_position[k]] | |
dist = np.linalg.norm(next_position - moving_robot.robot_position) | |
next_position_list[j] = next_position | |
dist_list[j] = dist | |
moving_robot.travel_dist += dist | |
moving_robot.robot_position = next_position | |
return next_position_list, dist_list | |
def work(self, currEpisode): | |
''' | |
Interacts with the environment. The agent gets either gradients or experience buffer | |
''' | |
self.run_episode(currEpisode) | |
def calculate_edge_mask(self, edge_inputs): | |
size = len(edge_inputs) | |
bias_matrix = np.ones((size, size)) | |
for i in range(size): | |
for j in range(size): | |
if j in edge_inputs[i]: | |
bias_matrix[i][j] = 0 | |
return bias_matrix | |
def make_gif(self, path, n): | |
""" Generate a gif given list of images """ | |
with imageio.get_writer('{}/{}_target_rate_{:.2f}.gif'.format(path, n, self.env.targets_found_rate), mode='I', | |
fps=5) as writer: | |
for frame in self.env.frame_files: | |
image = imageio.imread(frame) | |
writer.append_data(image) | |
print('gif complete\n') | |
# Remove files | |
for filename in self.env.frame_files[:-1]: | |
os.remove(filename) | |
# For gif during TTA | |
if LOAD_AVS_BENCH: | |
with imageio.get_writer('{}/{}_kmeans_stats.gif'.format(path, n), mode='I', | |
fps=5) as writer: | |
for frame in self.kmeans_clusterer.kmeans_frame_files: | |
image = imageio.imread(frame) | |
writer.append_data(image) | |
print('Kmeans Clusterer gif complete\n') | |
# Remove files | |
for filename in self.kmeans_clusterer.kmeans_frame_files[:-1]: | |
os.remove(filename) | |
################################################################################ | |
# SPPP Related Fns | |
################################################################################ | |
def log_metrics(self, step): | |
# Update tgt found metrics | |
if self.steps_to_first_tgt is None and self.env.num_targets_found == 1: | |
self.steps_to_first_tgt = step + 1 | |
if self.steps_to_mid_tgt is None and self.env.num_targets_found == int(len(self.env.target_positions) / 2): | |
self.steps_to_mid_tgt = step + 1 | |
if self.steps_to_last_tgt is None and self.env.num_targets_found == len(self.env.target_positions): | |
self.steps_to_last_tgt = step + 1 | |
def transpose_flat_idx(self, idx, H=NUM_COORDS_HEIGHT, W=NUM_COORDS_WIDTH): | |
""" | |
Transpose a flat index from an ``H×W`` grid to the equivalent | |
position in the ``W×H`` transposed grid while **keeping the result | |
in 1-D**. | |
""" | |
# --- Safety check to catch out-of-range indices --- | |
assert 0 <= idx < H * W, f"idx {idx} out of bounds for shape ({H}, {W})" | |
# Original (row, col) | |
row, col = divmod(idx, W) | |
# After transpose these coordinates swap | |
row_T, col_T = col, row | |
# Flatten back into 1-D (row-major) for the W×H grid | |
return row_T * H + col_T | |
def poisson_tta_update(self, robot, episode, step): | |
# Generate Kmeans Clusters Stats | |
# Scale index back to CLIP_GRIDS_DIMS to be compatible with CLIP patch size | |
if NUM_COORDS_WIDTH != CLIP_GRIDS_DIMS[0] or NUM_COORDS_HEIGHT != CLIP_GRIDS_DIMS[1]: | |
# High-res remap via pixel coordinates preserves exact neighbourhood | |
filt_traj_coords, filt_targets_found_on_path = self.scale_trajectory( | |
robot.trajectory_coords, | |
self.env.target_positions, | |
old_dims=(NUM_COORDS_HEIGHT, NUM_COORDS_WIDTH), | |
full_dims=(512, 512), | |
new_dims=(CLIP_GRIDS_DIMS[0], CLIP_GRIDS_DIMS[1]) | |
) | |
else: | |
filt_traj_coords = [self.transpose_flat_idx(idx) for idx in robot.trajectory_coords] | |
filt_targets_found_on_path = robot.targets_found_on_path | |
region_stats_dict = self.kmeans_clusterer.compute_region_statistics( | |
self.kmeans_sat_embeds_clusters, | |
self.clip_seg_tta.heatmap_unnormalized, | |
filt_traj_coords, | |
episode_num=episode, | |
step_num=step | |
) | |
# Prep & execute TTA | |
self.step_since_tta += 1 | |
if robot.targets_found_on_path[-1] or self.step_since_tta % STEPS_PER_TTA == 0: | |
# NOTE: integration with app.py on hf | |
self.clip_seg_tta.executing_tta = True | |
num_cells = self.clip_seg_tta.heatmap.shape[0] * self.clip_seg_tta.heatmap.shape[1] | |
pos_sample_weight_scale, neg_sample_weight_scale = [], [] | |
for i, sample_loc in enumerate(filt_traj_coords): | |
label = self.kmeans_clusterer.get_label_id(self.kmeans_sat_embeds_clusters, sample_loc) | |
num_patches = region_stats_dict[label]['num_patches'] | |
patches_visited = region_stats_dict[label]['patches_visited'] | |
expectation = region_stats_dict[label]['expectation'] | |
# Exponent like focal loss to wait for more samples before confidently decreasing | |
pos_weight = 4.0 | |
neg_weight = min(1.0, (patches_visited/(3*num_patches))**GAMMA_EXPONENT) | |
pos_sample_weight_scale.append(pos_weight) | |
neg_sample_weight_scale.append(neg_weight) | |
# # # Adaptative LR (as samples increase, increase LR to fit more datapoints) | |
adaptive_lr = MIN_LR + (MAX_LR - MIN_LR) * (step / num_cells) | |
# TTA Update | |
# NOTE: updated due to app.py (hf does not allow heatmap to persist) | |
heatmap = self.clip_seg_tta.execute_tta( | |
filt_traj_coords, | |
filt_targets_found_on_path, | |
tta_steps=NUM_TTA_STEPS, | |
lr=adaptive_lr, | |
pos_sample_weight=pos_sample_weight_scale, | |
neg_sample_weight=neg_sample_weight_scale, | |
reset_weights=RESET_WEIGHTS | |
) | |
self.clip_seg_tta.heatmap = heatmap | |
if NUM_COORDS_WIDTH != CLIP_GRIDS_DIMS[0] or NUM_COORDS_HEIGHT != CLIP_GRIDS_DIMS[1]: # If heatmap is resized from clip original dims | |
heatmap = self.convert_heatmap_resolution(self.clip_seg_tta.heatmap, full_dims=(512, 512), new_dims=(NUM_COORDS_WIDTH, NUM_COORDS_HEIGHT)) | |
self.env.segmentation_info_mask = np.expand_dims(heatmap.T.flatten(), axis=1) | |
unnormalized_heatmap = self.convert_heatmap_resolution(self.clip_seg_tta.heatmap_unnormalized, full_dims=(512, 512), new_dims=(NUM_COORDS_WIDTH, NUM_COORDS_HEIGHT)) | |
self.env.segmentation_info_mask_unnormalized = np.expand_dims(unnormalized_heatmap.T.flatten(), axis=1) | |
print("~Resized heatmap to", NUM_COORDS_WIDTH, "x", NUM_COORDS_HEIGHT) | |
else: | |
self.env.segmentation_info_mask = np.expand_dims(self.clip_seg_tta.heatmap.T.flatten(), axis=1) | |
self.env.segmentation_info_mask_unnormalized = np.expand_dims(self.clip_seg_tta.heatmap_unnormalized.T.flatten(), axis=1) | |
self.step_since_tta = 0 | |
# NOTE: integration with app.py on hf | |
self.clip_seg_tta.executing_tta = False | |
def convert_heatmap_resolution(self, heatmap, full_dims=(512, 512), new_dims=(24, 24)): | |
heatmap_large = resize(heatmap, full_dims, order=1, # order=1 → bilinear | |
mode='reflect', anti_aliasing=True) | |
coords = self.env.graph_generator.grid_coords # (N, N, 2) | |
rows, cols = coords[...,1], coords[...,0] | |
heatmap_resized = heatmap_large[rows, cols] | |
heatmap_resized = heatmap_resized.reshape(new_dims[1], new_dims[0]) | |
return heatmap_resized | |
def convert_labelmap_resolution(self, labelmap, full_dims=(512, 512), new_dims=(24, 24)): | |
""" | |
1) Upsample via nearest‐neighbor to full_dims | |
2) Sample back down to your graph grid using grid_coords | |
""" | |
# 1) Upsample with nearest‐neighbor, preserving integer labels | |
up = resize( | |
labelmap, | |
full_dims, | |
order=0, # nearest‐neighbor | |
mode='edge', # padding mode | |
preserve_range=True, # don't normalize labels | |
anti_aliasing=False # must be False for labels | |
).astype(labelmap.dtype) # back to original integer dtype | |
# 2) Downsample via your precomputed grid coords | |
coords = self.env.graph_generator.grid_coords # shape (N, N, 2) | |
rows = coords[...,1].astype(int) | |
cols = coords[...,0].astype(int) | |
small = up[rows, cols] # shape (N, N) | |
small = small.reshape(new_dims[0], new_dims[1]) | |
return small | |
def scale_trajectory(self, | |
flat_indices, | |
targets, | |
old_dims=(17, 17), | |
full_dims=(512, 512), | |
new_dims=(24, 24)): | |
""" | |
Args: | |
flat_indices: list of ints in [0..old_H*old_W-1] | |
targets: list of (y_pix, x_pix) in [0..full_H-1] | |
old_dims: (old_H, old_W) | |
full_dims: (full_H, full_W) | |
new_dims: (new_H, new_W) | |
Returns: | |
new_flat_traj: list of unique flattened indices in new_H×new_W | |
counts: list of ints, same length as new_flat_traj | |
""" | |
old_H, old_W = old_dims | |
full_H, full_W = full_dims | |
new_H, new_W = new_dims | |
# 1) bin targets into new grid | |
cell_h_new = full_H / new_H | |
cell_w_new = full_W / new_W | |
grid_counts = [[0]*new_W for _ in range(new_H)] | |
for x_pix, y_pix in targets: # note (x, y) order as in original implementation | |
i_t = min(int(y_pix / cell_h_new), new_H - 1) | |
j_t = min(int(x_pix / cell_w_new), new_W - 1) | |
grid_counts[i_t][j_t] += 1 | |
# 2) Walk the trajectory indices and project each old cell's *entire | |
# pixel footprint* onto the finer 24×24 grid. | |
cell_h_full = full_H / old_H | |
cell_w_full = full_W / old_W | |
seen = set() | |
new_flat_traj = [] | |
for node_idx in flat_indices: | |
if node_idx < 0 or node_idx >= len(self.env.graph_generator.node_coords): | |
continue | |
coord_xy = self.env.graph_generator.node_coords[node_idx] | |
try: | |
row_old, col_old = self.env.graph_generator.find_index_from_grid_coords_2d(coord_xy) | |
except Exception: | |
continue | |
# Bounding box of the old cell in full-resolution pixel space | |
y0 = row_old * cell_h_full | |
y1 = (row_old + 1) * cell_h_full | |
x0 = col_old * cell_w_full | |
x1 = (col_old + 1) * cell_w_full | |
# Which new-grid rows & cols overlap? (inclusive ranges) | |
i_start = max(0, min(int(y0 / cell_h_new), new_H - 1)) | |
i_end = max(0, min(int((y1 - 1) / cell_h_new), new_H - 1)) | |
j_start = max(0, min(int(x0 / cell_w_new), new_W - 1)) | |
j_end = max(0, min(int((x1 - 1) / cell_w_new), new_W - 1)) | |
for ii in range(i_start, i_end + 1): | |
for jj in range(j_start, j_end + 1): | |
f_new = ii * new_W + jj | |
if f_new not in seen: | |
seen.add(f_new) | |
new_flat_traj.append(f_new) | |
# 3) annotate counts | |
counts = [] | |
for f in new_flat_traj: | |
i_new, j_new = divmod(f, new_W) | |
counts.append(grid_counts[i_new][j_new]) | |
return new_flat_traj, counts | |
################################################################################ | |