Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024, Depth Anything V2 | |
# https://github.com/DepthAnything/Depth-Anything-V2/blob/main/depth_anything_v2/dpt.py | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from promptda.model.blocks import _make_scratch, _make_fusion_block | |
class DPTHead(nn.Module): | |
def __init__(self, | |
nclass, | |
in_channels, | |
features=256, | |
out_channels=[256, 512, 1024, 1024], | |
use_bn=False, | |
use_clstoken=False, | |
output_act='sigmoid'): | |
super(DPTHead, self).__init__() | |
self.nclass = nclass | |
self.use_clstoken = use_clstoken | |
self.projects = nn.ModuleList([ | |
nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channel, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) for out_channel in out_channels | |
]) | |
self.resize_layers = nn.ModuleList([ | |
nn.ConvTranspose2d( | |
in_channels=out_channels[0], | |
out_channels=out_channels[0], | |
kernel_size=4, | |
stride=4, | |
padding=0), | |
nn.ConvTranspose2d( | |
in_channels=out_channels[1], | |
out_channels=out_channels[1], | |
kernel_size=2, | |
stride=2, | |
padding=0), | |
nn.Identity(), | |
nn.Conv2d( | |
in_channels=out_channels[3], | |
out_channels=out_channels[3], | |
kernel_size=3, | |
stride=2, | |
padding=1) | |
]) | |
if use_clstoken: | |
self.readout_projects = nn.ModuleList() | |
for _ in range(len(self.projects)): | |
self.readout_projects.append( | |
nn.Sequential( | |
nn.Linear(2 * in_channels, in_channels), | |
nn.GELU())) | |
self.scratch = _make_scratch( | |
out_channels, | |
features, | |
groups=1, | |
expand=False, | |
) | |
self.scratch.stem_transpose = None | |
self.scratch.refinenet1 = _make_fusion_block( | |
features, use_bn) | |
self.scratch.refinenet2 = _make_fusion_block( | |
features, use_bn) | |
self.scratch.refinenet3 = _make_fusion_block( | |
features, use_bn) | |
self.scratch.refinenet4 = _make_fusion_block( | |
features, use_bn) | |
head_features_1 = features | |
head_features_2 = 32 | |
act_func = nn.Sigmoid() if output_act == 'sigmoid' else nn.Identity() | |
if nclass > 1: | |
self.scratch.output_conv = nn.Sequential( | |
nn.Conv2d(head_features_1, head_features_1, | |
kernel_size=3, stride=1, padding=1), | |
nn.ReLU(True), | |
nn.Conv2d(head_features_1, nclass, | |
kernel_size=1, stride=1, padding=0), | |
) | |
else: | |
self.scratch.output_conv1 = nn.Conv2d( | |
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1) | |
self.scratch.output_conv2 = nn.Sequential( | |
nn.Conv2d(head_features_1 // 2, head_features_2, | |
kernel_size=3, stride=1, padding=1), | |
nn.ReLU(True), | |
nn.Conv2d(head_features_2, 1, kernel_size=1, | |
stride=1, padding=0), | |
act_func, | |
) | |
def forward(self, out_features, patch_h, patch_w, prompt_depth=None): | |
out = [] | |
for i, x in enumerate(out_features): | |
if self.use_clstoken: | |
x, cls_token = x[0], x[1] | |
readout = cls_token.unsqueeze(1).expand_as(x) | |
x = self.readout_projects[i](torch.cat((x, readout), -1)) | |
else: | |
x = x[0] | |
x = x.permute(0, 2, 1).reshape( | |
(x.shape[0], x.shape[-1], patch_h, patch_w)) | |
x = self.projects[i](x) | |
x = self.resize_layers[i](x) | |
out.append(x) | |
layer_1, layer_2, layer_3, layer_4 = out | |
layer_1_rn = self.scratch.layer1_rn(layer_1) | |
layer_2_rn = self.scratch.layer2_rn(layer_2) | |
layer_3_rn = self.scratch.layer3_rn(layer_3) | |
layer_4_rn = self.scratch.layer4_rn(layer_4) | |
path_4 = self.scratch.refinenet4( | |
layer_4_rn, size=layer_3_rn.shape[2:], prompt_depth=prompt_depth) | |
path_3 = self.scratch.refinenet3( | |
path_4, layer_3_rn, size=layer_2_rn.shape[2:], prompt_depth=prompt_depth) | |
path_2 = self.scratch.refinenet2( | |
path_3, layer_2_rn, size=layer_1_rn.shape[2:], prompt_depth=prompt_depth) | |
path_1 = self.scratch.refinenet1( | |
path_2, layer_1_rn, prompt_depth=prompt_depth) | |
out = self.scratch.output_conv1(path_1) | |
out_feat = F.interpolate( | |
out, (int(patch_h * 14), int(patch_w * 14)), | |
mode="bilinear", align_corners=True) | |
out = self.scratch.output_conv2(out_feat) | |
return out | |