Spaces:
Running
on
Zero
Running
on
Zero
# Born out of Depth Anything V1 Issue 36 | |
# Make sure you have the necessary libraries | |
# Code by @1ssb | |
import argparse | |
import cv2 | |
import glob | |
import numpy as np | |
import open3d as o3d | |
import os | |
from PIL import Image | |
import torch | |
from depth_anything_v2.dpt import DepthAnythingV2 | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--encoder', default='vitl', type=str, choices=['vits', 'vitb', 'vitl', 'vitg']) | |
parser.add_argument('--load-from', default='', type=str) | |
parser.add_argument('--max-depth', default=20, type=float) | |
parser.add_argument('--img-path', type=str) | |
parser.add_argument('--outdir', type=str, default='./vis_pointcloud') | |
args = parser.parse_args() | |
# Global settings | |
FL = 715.0873 | |
FY = 784 * 0.6 | |
FX = 784 * 0.6 | |
NYU_DATA = False | |
FINAL_HEIGHT = 518 | |
FINAL_WIDTH = 518 | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
} | |
depth_anything = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth}) | |
depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu')) | |
depth_anything = depth_anything.to(DEVICE).eval() | |
if os.path.isfile(args.img_path): | |
if args.img_path.endswith('txt'): | |
with open(args.img_path, 'r') as f: | |
filenames = f.read().splitlines() | |
else: | |
filenames = [args.img_path] | |
else: | |
filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True) | |
os.makedirs(args.outdir, exist_ok=True) | |
for k, filename in enumerate(filenames): | |
print(f'Progress {k+1}/{len(filenames)}: {filename}') | |
color_image = Image.open(filename).convert('RGB') | |
image = cv2.imread(filename) | |
pred = depth_anything.infer_image(image, FINAL_HEIGHT) | |
# Resize color image and depth to final size | |
resized_color_image = color_image.resize((FINAL_WIDTH, FINAL_HEIGHT), Image.LANCZOS) | |
resized_pred = Image.fromarray(pred).resize((FINAL_WIDTH, FINAL_HEIGHT), Image.NEAREST) | |
focal_length_x, focal_length_y = (FX, FY) if not NYU_DATA else (FL, FL) | |
x, y = np.meshgrid(np.arange(FINAL_WIDTH), np.arange(FINAL_HEIGHT)) | |
x = (x - FINAL_WIDTH / 2) / focal_length_x | |
y = (y - FINAL_HEIGHT / 2) / focal_length_y | |
z = np.array(resized_pred) | |
points = np.stack((np.multiply(x, z), np.multiply(y, z), z), axis=-1).reshape(-1, 3) | |
colors = np.array(resized_color_image).reshape(-1, 3) / 255.0 | |
pcd = o3d.geometry.PointCloud() | |
pcd.points = o3d.utility.Vector3dVector(points) | |
pcd.colors = o3d.utility.Vector3dVector(colors) | |
o3d.io.write_point_cloud(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + ".ply"), pcd) |