Spaces:
Runtime error
Runtime error
import json | |
import os | |
import random | |
import traceback | |
import numpy as np | |
from paddle.io import Dataset | |
from .imaug import create_operators, transform | |
class SimpleDataSet(Dataset): | |
def __init__(self, config, mode, logger, seed=None): | |
super(SimpleDataSet, self).__init__() | |
self.logger = logger | |
self.mode = mode.lower() | |
global_config = config["Global"] | |
dataset_config = config[mode]["dataset"] | |
loader_config = config[mode]["loader"] | |
self.delimiter = dataset_config.get("delimiter", "\t") | |
label_file_list = dataset_config.pop("label_file_list") | |
data_source_num = len(label_file_list) | |
ratio_list = dataset_config.get("ratio_list", 1.0) | |
if isinstance(ratio_list, (float, int)): | |
ratio_list = [float(ratio_list)] * int(data_source_num) | |
assert ( | |
len(ratio_list) == data_source_num | |
), "The length of ratio_list should be the same as the file_list." | |
self.data_dir = dataset_config["data_dir"] | |
self.do_shuffle = loader_config["shuffle"] | |
self.seed = seed | |
logger.info("Initialize indexs of datasets:%s" % label_file_list) | |
self.data_lines = self.get_image_info_list(label_file_list, ratio_list) | |
self.data_idx_order_list = list(range(len(self.data_lines))) | |
if self.mode == "train" and self.do_shuffle: | |
self.shuffle_data_random() | |
self.ops = create_operators(dataset_config["transforms"], global_config) | |
self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx", 2) | |
self.need_reset = True in [x < 1 for x in ratio_list] | |
def get_image_info_list(self, file_list, ratio_list): | |
if isinstance(file_list, str): | |
file_list = [file_list] | |
data_lines = [] | |
for idx, file in enumerate(file_list): | |
with open(file, "rb") as f: | |
lines = f.readlines() | |
if self.mode == "train" or ratio_list[idx] < 1.0: | |
random.seed(self.seed) | |
lines = random.sample(lines, round(len(lines) * ratio_list[idx])) | |
data_lines.extend(lines) | |
return data_lines | |
def shuffle_data_random(self): | |
random.seed(self.seed) | |
random.shuffle(self.data_lines) | |
return | |
def _try_parse_filename_list(self, file_name): | |
# multiple images -> one gt label | |
if len(file_name) > 0 and file_name[0] == "[": | |
try: | |
info = json.loads(file_name) | |
file_name = random.choice(info) | |
except: | |
pass | |
return file_name | |
def get_ext_data(self): | |
ext_data_num = 0 | |
for op in self.ops: | |
if hasattr(op, "ext_data_num"): | |
ext_data_num = getattr(op, "ext_data_num") | |
break | |
load_data_ops = self.ops[: self.ext_op_transform_idx] | |
ext_data = [] | |
while len(ext_data) < ext_data_num: | |
file_idx = self.data_idx_order_list[np.random.randint(self.__len__())] | |
data_line = self.data_lines[file_idx] | |
data_line = data_line.decode("utf-8") | |
substr = data_line.strip("\n").split(self.delimiter) | |
file_name = substr[0] | |
file_name = self._try_parse_filename_list(file_name) | |
label = substr[1] | |
img_path = os.path.join(self.data_dir, file_name) | |
data = {"img_path": img_path, "label": label} | |
if not os.path.exists(img_path): | |
continue | |
with open(data["img_path"], "rb") as f: | |
img = f.read() | |
data["image"] = img | |
data = transform(data, load_data_ops) | |
if data is None: | |
continue | |
if "polys" in data.keys(): | |
if data["polys"].shape[1] != 4: | |
continue | |
ext_data.append(data) | |
return ext_data | |
def __getitem__(self, idx): | |
file_idx = self.data_idx_order_list[idx] | |
data_line = self.data_lines[file_idx] | |
try: | |
data_line = data_line.decode("utf-8") | |
substr = data_line.strip("\n").split(self.delimiter) | |
file_name = substr[0] | |
file_name = self._try_parse_filename_list(file_name) | |
label = substr[1] | |
img_path = os.path.join(self.data_dir, file_name) | |
data = {"img_path": img_path, "label": label} | |
if not os.path.exists(img_path): | |
raise Exception("{} does not exist!".format(img_path)) | |
with open(data["img_path"], "rb") as f: | |
img = f.read() | |
data["image"] = img | |
data["ext_data"] = self.get_ext_data() | |
outs = transform(data, self.ops) | |
except: | |
self.logger.error( | |
"When parsing line {}, error happened with msg: {}".format( | |
data_line, traceback.format_exc() | |
) | |
) | |
outs = None | |
if outs is None: | |
# during evaluation, we should fix the idx to get same results for many times of evaluation. | |
rnd_idx = ( | |
np.random.randint(self.__len__()) | |
if self.mode == "train" | |
else (idx + 1) % self.__len__() | |
) | |
return self.__getitem__(rnd_idx) | |
return outs | |
def __len__(self): | |
return len(self.data_idx_order_list) | |