depanshu357's picture
print img
70a0d4e
# import gradio as gr
# learn = load_learner('export.pkl')
# def greet(name):
# return "Hello " + name + "!!" + "kya hal chal"
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()
import gradio as gr
from fastai.vision.all import *
import skimage
learn = load_learner('export.pkl')
labels = learn.dls.vocab
def predict(img):
print(img)
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Shape Classifier"
description = "Shap classifier"
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
# examples = ['siamese.jpg']
interpretation='default'
enable_queue=True
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,interpretation=interpretation,enable_queue=enable_queue).launch()