Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
from peft import PeftModel | |
import gradio as gr | |
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-7b") | |
model = PeftModel.from_pretrained(model, "fadliaulawi/internlm-7b-finetuned") | |
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-7b", padding_side="left", use_fast = False) | |
def generate_prompt( | |
instruction, input, label | |
): | |
# template = { | |
# "description": "Template used by Alpaca-LoRA.", | |
# "prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n", | |
# "prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n", | |
# "response_split": "### Response:" | |
# } | |
# <s>[INST] <<SYS>> | |
# {{ system_prompt }} | |
# <</SYS>> | |
# {{ user_message }} [/INST] | |
# return '''<s>[INST] <<SYS>>\n{0}\n<</SYS>>\n\n{1} {2} [/INST]'''.format(template['prompt_input'].format(instruction=instruction, input=input), template['response_split'], label) | |
template = { | |
"description": "Template used by Alpaca-LoRA.", | |
"prompt_input": "Di bawah ini adalah instruksi yang menjelaskan tugas, dipasangkan dengan masukan yang memberikan konteks lebih lanjut. Tulis tanggapan yang melengkapi permintaan dengan tepat.\n\n### Instruksi:\n{instruction}\n\n### Masukan:\n{input}", | |
#"prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n", | |
"response_split": "### Tanggapan:" | |
} | |
if input: | |
res = template["prompt_input"].format(instruction=instruction, input=input) | |
#else: | |
# res = template["prompt_no_input"].format(instruction=instruction) | |
res = f"{res} \n\n### Tanggapan:\n" | |
if label: | |
res = f"{res}{label}" | |
return res | |
def user(message, history): | |
return "", history + [[message, None]] | |
def generate_and_tokenize_prompt(data_point): | |
full_prompt = generate_prompt( | |
data_point["instruction"], | |
data_point["input"], | |
data_point["output"], | |
) | |
# print(full_prompt) | |
# return | |
cutoff_len = 256 | |
tokenizer.pad_token = tokenizer.eos_token | |
result = tokenizer( | |
full_prompt, | |
truncation=True, | |
max_length=cutoff_len, | |
padding=True, | |
return_tensors=None, | |
) | |
if (result["input_ids"][-1] != tokenizer.eos_token_id and len(result["input_ids"]) < cutoff_len): | |
result["input_ids"].append(tokenizer.eos_token_id) | |
result["attention_mask"].append(1) | |
# result["labels"] = result["input_ids"].copy() | |
return result | |
def bot(history,temperature, max_new_tokens, top_p,top_k): | |
user_message = history[-1][0] | |
data = { | |
'instruction': "Jika Anda seorang dokter, silakan menjawab pertanyaan medis berdasarkan deskripsi pasien.", | |
'input': user_message, | |
'output': '' | |
} | |
new_user_input_ids = generate_and_tokenize_prompt(data) | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.LongTensor([new_user_input_ids['input_ids']]) | |
# generate a response | |
response = model.generate( | |
input_ids=bot_input_ids, | |
pad_token_id=tokenizer.eos_token_id, | |
temperature = float(temperature), | |
max_new_tokens=max_new_tokens, | |
top_p=float(top_p), | |
top_k=top_k, | |
do_sample=True | |
) | |
# clean up response before returning | |
response = tokenizer.batch_decode(response, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
sections = response.split("###") | |
response = sections[3] | |
response=response.split("Tanggapan:")[1].strip() | |
history[-1][1] = response | |
return history | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
"""# ChatDoctor - InternLM 7b 🩺 | |
A [ChatDoctor - InternLM 7b](https://huggingface.co/fadliaulawi/internlm-7b-finetuned) demo. | |
From the [InternLM 7b](https://huggingface.co/internlm/internlm-7b) model and finetuned on the Indonesian translation of [ChatDoctor](https://github.com/Kent0n-Li/ChatDoctor) dataset. | |
""" | |
) | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
submit = gr.Button("Submit") | |
clear = gr.Button("Clear") | |
examples = gr.Examples(examples=["Dokter, aku mengalami kelelahan akhir-akhir ini.", "Dokter, aku merasa pusing, lemah dan sakit dada tajam akhir-akhir ini.", | |
"Dokter, aku merasa sangat depresi akhir-akhir ini dan juga mengalami perubahan suhu tubuhku.", | |
"Dokter, saya sudah beberapa minggu mengalami suara serak dan tidak kunjung membaik meski sudah minum obat. Apa masalahnya?" | |
],inputs=[msg]) | |
gr.Markdown( | |
"""## Adjust the additional inputs:""" | |
) | |
temperature = gr.Slider(0, 5, value=0.8, step=0.1, label='Temperature',info="Controls randomness, higher values increase diversity.") | |
max_length = gr.Slider(0, 1024, value=50, step=1, label='Max Length',info="The maximum numbers of output's tokens.") | |
top_p = gr.Slider(0, 1, value=0.8, step=0.1, label='Top P',info="The cumulative probability cutoff for token selection. Lower values mean sampling from a smaller, more top-weighted nucleus.") | |
top_k = gr.Slider(0, 50, value=10, step=1, label='Top K',info="Sample from the k most likely next tokens at each step. Lower k focuses on higher probability tokens.") | |
submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, [chatbot,temperature,max_length,top_p,top_k], chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue(concurrency_count=100).launch() |