chatbot / app.py
dennis-fast's picture
Update app.py
5ca7e26
raw
history blame
1.99 kB
import transformers
import gradio as gr
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
model_name = 'microsoft/DialoGPT-large'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(
bot_input_ids,
max_length=1000,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
top_p = 0.92,
top_k = 50
).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).split("<|endoftext|>")
#response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
response.remove("")
# write some HTML
html = "<div class='chatbot'>"
for m, msg in enumerate(response):
cls = "user" if m%2 == 0 else "bot"
html += "<div class='msg {}'> {}</div>".format(cls, msg)
html += "</div>"
#return response, history
return html, history
css = """
.chatbox {display:flex;flex-direction:column}
.msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
.msg.user {background-color:cornflowerblue;color:white}
.msg.bot {background-color:lightgray;align-self:self-end}
.footer {display:none !important}
"""
gr.Interface(fn=predict,
title="DialoGPT-large",
inputs=["text", "state"],
outputs=["html", "state"],
css=css
).launch()