wanghe
commited on
Commit
·
c43f521
1
Parent(s):
5189b41
test
Browse files- app.py +37 -13
- model (1).pkl → model_last.pkl +0 -0
app.py
CHANGED
|
@@ -1,25 +1,49 @@
|
|
| 1 |
-
import gradio
|
| 2 |
from fastai.vision.all import *
|
| 3 |
|
| 4 |
-
|
|
|
|
| 5 |
return "Hello " + name + "!!"
|
| 6 |
|
| 7 |
-
learn = load_learner("model.pkl");
|
| 8 |
|
| 9 |
def is_cat(x): return x[0].isupper()
|
| 10 |
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def classify_image(img):
|
| 14 |
-
pred,idx,probs = learn.predict(img)
|
| 15 |
-
return dict(zip(categories, map(float,probs)))
|
| 16 |
|
| 17 |
-
image = gr.inputs.Image(shape=(192,192))
|
| 18 |
-
label = gr.outputs.Label()
|
| 19 |
-
examples = ["WX20240713-091831@2x.png","WX20240713-091821@2x.png","WX20240713-091430@2x.png","WX20240713-090252@2x.png"]
|
| 20 |
-
intf = gr.Interface(fn=classify_image,inputs = image,outputs = label,examples = examples)
|
| 21 |
-
intf.launch(inline=False)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
demo =
|
| 25 |
-
demo.launch()
|
|
|
|
| 1 |
+
import gradio
|
| 2 |
from fastai.vision.all import *
|
| 3 |
|
| 4 |
+
|
| 5 |
+
def gradioeet(name):
|
| 6 |
return "Hello " + name + "!!"
|
| 7 |
|
|
|
|
| 8 |
|
| 9 |
def is_cat(x): return x[0].isupper()
|
| 10 |
|
| 11 |
|
| 12 |
+
# path = untar_data(URLs.DOGS) / 'images'
|
| 13 |
+
# dls = ImageDataLoaders.from_name_func('.',
|
| 14 |
+
# get_image_files(path), valid_pct=0.2, seed=42,
|
| 15 |
+
# label_func=is_cat,
|
| 16 |
+
# item_tfms=Resize(192))
|
| 17 |
+
#
|
| 18 |
+
# dls.valid.show_batch(max_n=4, nrows=1)
|
| 19 |
+
#
|
| 20 |
+
|
| 21 |
+
#
|
| 22 |
+
# learn = vision_learner(dls, resnet18, metrics=error_rate)
|
| 23 |
+
# learn.fine_tune(3)
|
| 24 |
+
|
| 25 |
+
# interp = ClassificationInterpretation.from_learner(learn)
|
| 26 |
+
# interp.plot_confusion_matrix()
|
| 27 |
+
#
|
| 28 |
+
# learn.export('model2.pkl')
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
learn = load_learner("model_last.pkl")
|
| 32 |
+
|
| 33 |
+
categories = {"No_Cat", "Cat"}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
def classify_image(img):
|
| 37 |
+
pred, idx, probs = learn.predict(img)
|
| 38 |
+
return dict(zip(categories, map(float, probs)))
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
image = gradio.Image(height=192, width=192)
|
| 42 |
+
label = gradio.Label()
|
| 43 |
+
examples = ["WX20240713-091831@2x.png", "WX20240713-091821@2x.png", "WX20240713-091430@2x.png",
|
| 44 |
+
"WX20240713-090252@2x.png"]
|
| 45 |
+
intf = gradio.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
| 46 |
+
intf.launch(inline=False)
|
| 47 |
|
| 48 |
+
# demo = gradio.Interface(fn=gradioeet, inputs="text", outputs="text")
|
| 49 |
+
# demo.launch(inline=False)
|
model (1).pkl → model_last.pkl
RENAMED
|
File without changes
|