Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clémentine
commited on
Commit
·
b899767
1
Parent(s):
1ffc326
removed quantization to simplify
Browse files- src/about.py +4 -3
- src/backend/manage_requests.py +8 -9
- src/display/utils.py +9 -9
src/about.py
CHANGED
|
@@ -8,15 +8,16 @@ class Task:
|
|
| 8 |
col_name: str
|
| 9 |
|
| 10 |
|
| 11 |
-
#
|
|
|
|
| 12 |
class Tasks(Enum):
|
| 13 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 14 |
task0 = Task("anli_r1", "acc", "ANLI")
|
| 15 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 16 |
|
| 17 |
-
TASKS_HARNESS = [task.value.benchmark for task in Tasks]
|
| 18 |
-
|
| 19 |
NUM_FEWSHOT = 0 # Change with your few shot
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
# Your leaderboard name
|
|
|
|
| 8 |
col_name: str
|
| 9 |
|
| 10 |
|
| 11 |
+
# Select your tasks here
|
| 12 |
+
# ---------------------------------------------------
|
| 13 |
class Tasks(Enum):
|
| 14 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
task0 = Task("anli_r1", "acc", "ANLI")
|
| 16 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 17 |
|
|
|
|
|
|
|
| 18 |
NUM_FEWSHOT = 0 # Change with your few shot
|
| 19 |
+
# ---------------------------------------------------
|
| 20 |
+
|
| 21 |
|
| 22 |
|
| 23 |
# Your leaderboard name
|
src/backend/manage_requests.py
CHANGED
|
@@ -14,7 +14,7 @@ class EvalRequest:
|
|
| 14 |
json_filepath: str
|
| 15 |
weight_type: str = "Original"
|
| 16 |
model_type: str = "" # pretrained, finetuned, with RL
|
| 17 |
-
precision: str = "" # float16, bfloat16
|
| 18 |
base_model: Optional[str] = None # for adapter models
|
| 19 |
revision: str = "main" # commit
|
| 20 |
submitted_time: Optional[str] = "2022-05-18T11:40:22.519222" # random date just so that we can still order requests by date
|
|
@@ -28,11 +28,12 @@ class EvalRequest:
|
|
| 28 |
|
| 29 |
if self.precision in ["float16", "bfloat16"]:
|
| 30 |
model_args += f",dtype={self.precision}"
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
| 36 |
# A GPTQ model does not need dtype to be specified,
|
| 37 |
# it will be inferred from the config
|
| 38 |
pass
|
|
@@ -42,9 +43,7 @@ class EvalRequest:
|
|
| 42 |
return model_args
|
| 43 |
|
| 44 |
|
| 45 |
-
def set_eval_request(
|
| 46 |
-
api: HfApi, eval_request: EvalRequest, set_to_status: str, hf_repo: str, local_dir: str
|
| 47 |
-
):
|
| 48 |
"""Updates a given eval request with its new status on the hub (running, completed, failed, ...)"""
|
| 49 |
json_filepath = eval_request.json_filepath
|
| 50 |
|
|
|
|
| 14 |
json_filepath: str
|
| 15 |
weight_type: str = "Original"
|
| 16 |
model_type: str = "" # pretrained, finetuned, with RL
|
| 17 |
+
precision: str = "" # float16, bfloat16
|
| 18 |
base_model: Optional[str] = None # for adapter models
|
| 19 |
revision: str = "main" # commit
|
| 20 |
submitted_time: Optional[str] = "2022-05-18T11:40:22.519222" # random date just so that we can still order requests by date
|
|
|
|
| 28 |
|
| 29 |
if self.precision in ["float16", "bfloat16"]:
|
| 30 |
model_args += f",dtype={self.precision}"
|
| 31 |
+
# Quantized models need some added config, the install of bits and bytes, etc
|
| 32 |
+
#elif self.precision == "8bit":
|
| 33 |
+
# model_args += ",load_in_8bit=True"
|
| 34 |
+
#elif self.precision == "4bit":
|
| 35 |
+
# model_args += ",load_in_4bit=True"
|
| 36 |
+
#elif self.precision == "GPTQ":
|
| 37 |
# A GPTQ model does not need dtype to be specified,
|
| 38 |
# it will be inferred from the config
|
| 39 |
pass
|
|
|
|
| 43 |
return model_args
|
| 44 |
|
| 45 |
|
| 46 |
+
def set_eval_request(api: HfApi, eval_request: EvalRequest, set_to_status: str, hf_repo: str, local_dir: str):
|
|
|
|
|
|
|
| 47 |
"""Updates a given eval request with its new status on the hub (running, completed, failed, ...)"""
|
| 48 |
json_filepath = eval_request.json_filepath
|
| 49 |
|
src/display/utils.py
CHANGED
|
@@ -94,9 +94,9 @@ class WeightType(Enum):
|
|
| 94 |
class Precision(Enum):
|
| 95 |
float16 = ModelDetails("float16")
|
| 96 |
bfloat16 = ModelDetails("bfloat16")
|
| 97 |
-
qt_8bit = ModelDetails("8bit")
|
| 98 |
-
qt_4bit = ModelDetails("4bit")
|
| 99 |
-
qt_GPTQ = ModelDetails("GPTQ")
|
| 100 |
Unknown = ModelDetails("?")
|
| 101 |
|
| 102 |
def from_str(precision):
|
|
@@ -104,12 +104,12 @@ class Precision(Enum):
|
|
| 104 |
return Precision.float16
|
| 105 |
if precision in ["torch.bfloat16", "bfloat16"]:
|
| 106 |
return Precision.bfloat16
|
| 107 |
-
if precision in ["8bit"]:
|
| 108 |
-
|
| 109 |
-
if precision in ["4bit"]:
|
| 110 |
-
|
| 111 |
-
if precision in ["GPTQ", "None"]:
|
| 112 |
-
|
| 113 |
return Precision.Unknown
|
| 114 |
|
| 115 |
# Column selection
|
|
|
|
| 94 |
class Precision(Enum):
|
| 95 |
float16 = ModelDetails("float16")
|
| 96 |
bfloat16 = ModelDetails("bfloat16")
|
| 97 |
+
#qt_8bit = ModelDetails("8bit")
|
| 98 |
+
#qt_4bit = ModelDetails("4bit")
|
| 99 |
+
#qt_GPTQ = ModelDetails("GPTQ")
|
| 100 |
Unknown = ModelDetails("?")
|
| 101 |
|
| 102 |
def from_str(precision):
|
|
|
|
| 104 |
return Precision.float16
|
| 105 |
if precision in ["torch.bfloat16", "bfloat16"]:
|
| 106 |
return Precision.bfloat16
|
| 107 |
+
#if precision in ["8bit"]:
|
| 108 |
+
# return Precision.qt_8bit
|
| 109 |
+
#if precision in ["4bit"]:
|
| 110 |
+
# return Precision.qt_4bit
|
| 111 |
+
#if precision in ["GPTQ", "None"]:
|
| 112 |
+
# return Precision.qt_GPTQ
|
| 113 |
return Precision.Unknown
|
| 114 |
|
| 115 |
# Column selection
|