Spaces:
Sleeping
Sleeping
import datasets | |
import torch | |
import numpy as np | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
dataset = datasets.load_dataset("beans") | |
extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") | |
model = AutoModelForImageClassification.from_pretrained("saved_model_files") | |
labels = dataset['train'].features['labels'].names | |
def classify(input_image): | |
features = extractor(input_image, return_tensors='pt') | |
logits = model(features["pixel_values"])[-1] | |
probability = torch.nn.functional.softmax(logits, dim=-1) | |
probs = probability[0].detach().numpy() | |
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} | |
return confidences | |
import gradio as gr | |
interface = gr.Interface(fn=classify, inputs='image', outputs='label', title='Leaf classification on beans dataset', | |
description='Sample fine-tuning a ViT for bean dataset classification') | |
interface.launch() | |