Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import tempfile
|
5 |
+
import os
|
6 |
+
from dejan.veczip import veczip
|
7 |
+
import csv
|
8 |
+
import ast
|
9 |
+
from huggingface_hub import hf_hub_download, HfApi
|
10 |
+
from transformers import AutoTokenizer, AutoModel
|
11 |
+
import torch
|
12 |
+
|
13 |
+
# Function definitions (is_numeric, parse_as_array, get_line_pattern, detect_header, looks_like_id_column, detect_columns, load_and_validate_embeddings, save_compressed_embeddings, run_veczip - same as before)
|
14 |
+
# -----------------
|
15 |
+
def is_numeric(s):
|
16 |
+
"""Checks if a given string is numeric."""
|
17 |
+
try:
|
18 |
+
float(s)
|
19 |
+
return True
|
20 |
+
except:
|
21 |
+
return False
|
22 |
+
|
23 |
+
def parse_as_array(val):
|
24 |
+
"""Parses a string as an array of numbers."""
|
25 |
+
if isinstance(val, (int, float)):
|
26 |
+
return [val]
|
27 |
+
val_str = str(val).strip()
|
28 |
+
if val_str.startswith("[") and val_str.endswith("]"):
|
29 |
+
try:
|
30 |
+
arr = ast.literal_eval(val_str)
|
31 |
+
if isinstance(arr, list) and all(is_numeric(str(x)) for x in arr):
|
32 |
+
return arr
|
33 |
+
return None
|
34 |
+
except:
|
35 |
+
return None
|
36 |
+
parts = val_str.split(",")
|
37 |
+
if len(parts) > 1 and all(is_numeric(p.strip()) for p in parts):
|
38 |
+
return [float(p.strip()) for p in parts]
|
39 |
+
return None
|
40 |
+
|
41 |
+
def get_line_pattern(row):
|
42 |
+
"""Detects the pattern (text, number, or array) of a row."""
|
43 |
+
pattern = []
|
44 |
+
for val in row:
|
45 |
+
arr = parse_as_array(val)
|
46 |
+
if arr is not None:
|
47 |
+
pattern.append('arr')
|
48 |
+
else:
|
49 |
+
if is_numeric(val):
|
50 |
+
pattern.append('num')
|
51 |
+
else:
|
52 |
+
pattern.append('text')
|
53 |
+
return pattern
|
54 |
+
|
55 |
+
def detect_header(lines):
|
56 |
+
"""Detects if a CSV has a header."""
|
57 |
+
if len(lines) < 2:
|
58 |
+
return False
|
59 |
+
first_line_pattern = get_line_pattern(lines[0])
|
60 |
+
subsequent_patterns = [get_line_pattern(r) for r in lines[1:]]
|
61 |
+
if len(subsequent_patterns) > 1:
|
62 |
+
if all(p == subsequent_patterns[0] for p in subsequent_patterns) and first_line_pattern != subsequent_patterns[0]:
|
63 |
+
return True
|
64 |
+
else:
|
65 |
+
if subsequent_patterns and first_line_pattern != subsequent_patterns[0]:
|
66 |
+
return True
|
67 |
+
return False
|
68 |
+
|
69 |
+
def looks_like_id_column(col_values):
|
70 |
+
"""Checks if a column looks like an ID column (sequential integers)."""
|
71 |
+
try:
|
72 |
+
nums = [int(float(v)) for v in col_values]
|
73 |
+
return nums == list(range(nums[0], nums[0] + len(nums)))
|
74 |
+
except:
|
75 |
+
return False
|
76 |
+
|
77 |
+
def detect_columns(file_path):
|
78 |
+
"""Detects embedding and metadata columns in a CSV file."""
|
79 |
+
with open(file_path, "r", newline="", encoding="utf-8") as f:
|
80 |
+
try:
|
81 |
+
sample = f.read(1024*10) # Read a larger sample for sniffing
|
82 |
+
dialect = csv.Sniffer().sniff(sample, delimiters=[',','\t',';','|'])
|
83 |
+
delimiter = dialect.delimiter
|
84 |
+
except:
|
85 |
+
delimiter = ','
|
86 |
+
f.seek(0) # reset file pointer
|
87 |
+
reader = csv.reader(f, delimiter=delimiter)
|
88 |
+
first_lines = list(reader)[:10]
|
89 |
+
|
90 |
+
if not first_lines:
|
91 |
+
raise ValueError("No data")
|
92 |
+
|
93 |
+
has_header = detect_header(first_lines)
|
94 |
+
if has_header:
|
95 |
+
header = first_lines[0]
|
96 |
+
data = first_lines[1:]
|
97 |
+
else:
|
98 |
+
header = []
|
99 |
+
data = first_lines
|
100 |
+
|
101 |
+
if not data:
|
102 |
+
return has_header, [], [], delimiter
|
103 |
+
|
104 |
+
cols = list(zip(*data))
|
105 |
+
|
106 |
+
candidate_arrays = []
|
107 |
+
candidate_numeric = []
|
108 |
+
id_like_columns = set()
|
109 |
+
text_like_columns = set()
|
110 |
+
|
111 |
+
for ci, col in enumerate(cols):
|
112 |
+
col = list(col)
|
113 |
+
parsed_rows = [parse_as_array(val) for val in col]
|
114 |
+
|
115 |
+
if all(r is not None for r in parsed_rows):
|
116 |
+
lengths = {len(r) for r in parsed_rows}
|
117 |
+
if len(lengths) == 1:
|
118 |
+
candidate_arrays.append(ci)
|
119 |
+
continue
|
120 |
+
else:
|
121 |
+
text_like_columns.add(ci)
|
122 |
+
continue
|
123 |
+
|
124 |
+
if all(is_numeric(v) for v in col):
|
125 |
+
if looks_like_id_column(col):
|
126 |
+
id_like_columns.add(ci)
|
127 |
+
else:
|
128 |
+
candidate_numeric.append(ci)
|
129 |
+
else:
|
130 |
+
text_like_columns.add(ci)
|
131 |
+
|
132 |
+
identified_embedding_columns = set(candidate_arrays)
|
133 |
+
identified_metadata_columns = set()
|
134 |
+
|
135 |
+
if candidate_arrays:
|
136 |
+
identified_metadata_columns.update(candidate_numeric)
|
137 |
+
else:
|
138 |
+
if len(candidate_numeric) > 1:
|
139 |
+
identified_embedding_columns.update(candidate_numeric)
|
140 |
+
else:
|
141 |
+
identified_metadata_columns.update(candidate_numeric)
|
142 |
+
|
143 |
+
identified_metadata_columns.update(id_like_columns)
|
144 |
+
identified_metadata_columns.update(text_like_columns)
|
145 |
+
|
146 |
+
|
147 |
+
if header:
|
148 |
+
for ci, col_name in enumerate(header):
|
149 |
+
if col_name.lower() == 'id':
|
150 |
+
if ci in identified_embedding_columns:
|
151 |
+
identified_embedding_columns.remove(ci)
|
152 |
+
identified_metadata_columns.add(ci)
|
153 |
+
break
|
154 |
+
|
155 |
+
emb_cols = [header[i] if header and i < len(header) else i for i in identified_embedding_columns]
|
156 |
+
meta_cols = [header[i] if header and i < len(header) else i for i in identified_metadata_columns]
|
157 |
+
|
158 |
+
|
159 |
+
return has_header, emb_cols, meta_cols, delimiter
|
160 |
+
|
161 |
+
def load_and_validate_embeddings(input_file, target_dims):
|
162 |
+
"""Loads, validates, and summarizes embedding data from a CSV."""
|
163 |
+
print(f"Loading data from {input_file}...")
|
164 |
+
has_header, embedding_columns, metadata_columns, delimiter = detect_columns(input_file)
|
165 |
+
data = pd.read_csv(input_file, header=0 if has_header else None, delimiter=delimiter)
|
166 |
+
|
167 |
+
|
168 |
+
def is_valid_row(row):
|
169 |
+
for col in embedding_columns:
|
170 |
+
if parse_as_array(row[col]) is None:
|
171 |
+
return False
|
172 |
+
return True
|
173 |
+
|
174 |
+
valid_rows_filter = data.apply(is_valid_row, axis=1)
|
175 |
+
data = data[valid_rows_filter]
|
176 |
+
|
177 |
+
print("\n=== File Summary ===")
|
178 |
+
print(f"File: {input_file}")
|
179 |
+
print(f"Rows: {len(data)}")
|
180 |
+
print(f"Metadata Columns: {metadata_columns}")
|
181 |
+
print(f"Embedding Columns: {embedding_columns}")
|
182 |
+
print("====================\n")
|
183 |
+
|
184 |
+
return data, embedding_columns, metadata_columns, has_header, list(data.columns)
|
185 |
+
|
186 |
+
|
187 |
+
def save_compressed_embeddings(output_file, metadata, compressed_embeddings, embedding_columns, original_columns, has_header):
|
188 |
+
"""Saves compressed embeddings to a CSV file."""
|
189 |
+
print(f"Saving compressed data to {output_file}...")
|
190 |
+
metadata = metadata.copy()
|
191 |
+
|
192 |
+
|
193 |
+
for i, col in enumerate(embedding_columns):
|
194 |
+
metadata[col] = [compressed_embeddings[i][j].tolist() for j in range(compressed_embeddings[i].shape[0])]
|
195 |
+
|
196 |
+
header_option = True if has_header else False
|
197 |
+
final_df = metadata.reindex(columns=original_columns) if original_columns else metadata
|
198 |
+
final_df.to_csv(output_file, index=False, header=header_option)
|
199 |
+
print(f"Data saved to {output_file}.")
|
200 |
+
|
201 |
+
def run_veczip(input_file, target_dims=16):
|
202 |
+
"""Runs veczip compression on the input data."""
|
203 |
+
data, embedding_columns, metadata_columns, has_header, original_columns = load_and_validate_embeddings(input_file, target_dims)
|
204 |
+
|
205 |
+
all_embeddings = []
|
206 |
+
for col in embedding_columns:
|
207 |
+
embeddings = np.array([parse_as_array(x) for x in data[col].values])
|
208 |
+
all_embeddings.append(embeddings)
|
209 |
+
|
210 |
+
combined_embeddings = np.concatenate(all_embeddings, axis=0)
|
211 |
+
compressor = veczip(target_dims=target_dims)
|
212 |
+
retained_indices = compressor.compress(combined_embeddings)
|
213 |
+
|
214 |
+
|
215 |
+
compressed_embeddings = []
|
216 |
+
for embeddings in all_embeddings:
|
217 |
+
compressed_embeddings.append(embeddings[:, retained_indices])
|
218 |
+
|
219 |
+
temp_output = tempfile.NamedTemporaryFile(suffix='.csv', delete=False)
|
220 |
+
save_compressed_embeddings(temp_output.name, data[metadata_columns], compressed_embeddings, embedding_columns, original_columns, has_header)
|
221 |
+
return temp_output.name
|
222 |
+
# -----------------
|
223 |
+
|
224 |
+
# Embedding Generation Function
|
225 |
+
@st.cache_resource
|
226 |
+
def load_embedding_model(model_name="mixedbread-ai/mxbai-embed-large-v1"):
|
227 |
+
"""Loads the embedding model and tokenizer."""
|
228 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
229 |
+
model = AutoModel.from_pretrained(model_name)
|
230 |
+
return tokenizer, model
|
231 |
+
|
232 |
+
@st.cache_data
|
233 |
+
def generate_embeddings(text_list, tokenizer, model):
|
234 |
+
"""Generates embeddings for a list of text entries."""
|
235 |
+
encoded_input = tokenizer(
|
236 |
+
text_list, padding=True, truncation=True, return_tensors="pt"
|
237 |
+
)
|
238 |
+
with torch.no_grad():
|
239 |
+
model_output = model(**encoded_input)
|
240 |
+
embeddings = model_output.last_hidden_state.mean(dim=1)
|
241 |
+
return embeddings.cpu().numpy()
|
242 |
+
|
243 |
+
|
244 |
+
# Streamlit App
|
245 |
+
def main():
|
246 |
+
st.title("Veczip Embeddings Tool")
|
247 |
+
|
248 |
+
st.markdown(
|
249 |
+
"""
|
250 |
+
This tool offers two ways to compress your embeddings:
|
251 |
+
|
252 |
+
1. **Compress Your Embeddings:** Upload a CSV file containing pre-existing embeddings and reduce their dimensionality using `dejan.veczip`.
|
253 |
+
2. **Generate & Compress Embeddings:** Provide a list of text entries, and this tool will generate embeddings using `mxbai-embed-large-v1` and then compress them.
|
254 |
+
"""
|
255 |
+
)
|
256 |
+
st.markdown(
|
257 |
+
"""
|
258 |
+
**General Usage Guide**
|
259 |
+
|
260 |
+
* Both tools work best with larger datasets (hundreds or thousands of entries).
|
261 |
+
* For CSV files with embeddings, ensure that numeric embedding columns are parsed as arrays (e.g. '[1,2,3]' or '1,2,3') and metadata columns are parsed as text or numbers.
|
262 |
+
* Output files are compressed to 16 dimensions.
|
263 |
+
"""
|
264 |
+
)
|
265 |
+
|
266 |
+
|
267 |
+
tab1, tab2 = st.tabs(["Compress Your Embeddings", "Generate & Compress Embeddings"])
|
268 |
+
|
269 |
+
with tab1:
|
270 |
+
st.header("Compress Your Embeddings")
|
271 |
+
st.markdown(
|
272 |
+
"""
|
273 |
+
Upload a CSV file containing pre-existing embeddings.
|
274 |
+
This will reduce the dimensionality of the embeddings to 16 dimensions using `dejan.veczip`.
|
275 |
+
"""
|
276 |
+
)
|
277 |
+
uploaded_file = st.file_uploader(
|
278 |
+
"Upload CSV file with embeddings", type=["csv"],
|
279 |
+
help="Ensure the CSV file has columns where embedding arrays are represented as text. Examples: '[1,2,3]' or '1,2,3'",
|
280 |
+
)
|
281 |
+
if uploaded_file:
|
282 |
+
try:
|
283 |
+
with st.spinner("Analyzing and compressing embeddings..."):
|
284 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
285 |
+
temp_file.write(uploaded_file.read())
|
286 |
+
temp_file.close()
|
287 |
+
output_file_path = run_veczip(temp_file.name)
|
288 |
+
with open(output_file_path, 'rb') as f:
|
289 |
+
st.download_button(
|
290 |
+
label="Download Compressed CSV",
|
291 |
+
data=f,
|
292 |
+
file_name="compressed_embeddings.csv",
|
293 |
+
mime="text/csv"
|
294 |
+
)
|
295 |
+
os.unlink(temp_file.name)
|
296 |
+
os.unlink(output_file_path)
|
297 |
+
st.success("Compression complete! Download your compressed file below.")
|
298 |
+
except Exception as e:
|
299 |
+
st.error(f"Error processing file: {e}")
|
300 |
+
with tab2:
|
301 |
+
st.header("Generate & Compress Embeddings")
|
302 |
+
st.markdown(
|
303 |
+
"""
|
304 |
+
Provide a list of text entries (one per line), and this tool will:
|
305 |
+
1. Generate embeddings using `mixedbread-ai/mxbai-embed-large-v1`.
|
306 |
+
2. Compress those embeddings to 16 dimensions using `dejan.veczip`.
|
307 |
+
"""
|
308 |
+
)
|
309 |
+
text_input = st.text_area(
|
310 |
+
"Enter text entries (one per line)",
|
311 |
+
help="Enter each text entry on a new line. This tool works best with a large sample size.",
|
312 |
+
)
|
313 |
+
|
314 |
+
if text_input:
|
315 |
+
text_list = text_input.strip().split("\n")
|
316 |
+
if len(text_list) == 0:
|
317 |
+
st.warning("Please enter some text for embedding")
|
318 |
+
else:
|
319 |
+
try:
|
320 |
+
with st.spinner("Generating and compressing embeddings..."):
|
321 |
+
tokenizer, model = load_embedding_model()
|
322 |
+
embeddings = generate_embeddings(text_list, tokenizer, model)
|
323 |
+
compressor = veczip(target_dims=16)
|
324 |
+
retained_indices = compressor.compress(embeddings)
|
325 |
+
compressed_embeddings = embeddings[:, retained_indices]
|
326 |
+
df = pd.DataFrame(
|
327 |
+
{"text": text_list, "embeddings": compressed_embeddings.tolist()}
|
328 |
+
)
|
329 |
+
st.dataframe(df)
|
330 |
+
csv_file = df.to_csv(index=False).encode()
|
331 |
+
st.download_button(
|
332 |
+
label="Download Compressed Embeddings (CSV)",
|
333 |
+
data=csv_file,
|
334 |
+
file_name="generated_compressed_embeddings.csv",
|
335 |
+
mime="text/csv",
|
336 |
+
)
|
337 |
+
st.success("Generated and compressed! Download your file below.")
|
338 |
+
|
339 |
+
except Exception as e:
|
340 |
+
st.error(f"Error: {e}")
|
341 |
+
|
342 |
+
|
343 |
+
if __name__ == "__main__":
|
344 |
+
main()
|