Spaces:
Running
Running
import streamlit as st | |
import degirum as dg | |
from PIL import Image | |
import degirum_tools | |
# hw_location: Where you want to run inference. | |
# Use "@cloud" to use DeGirum cloud. | |
# Use "@local" to run on local machine. | |
# Use an IP address for AI server inference. | |
hw_location = "@cloud" | |
# face_model_zoo_url: URL/path for the face model zoo. | |
# Use cloud_zoo_url for @cloud, @local, and AI server inference options. | |
# Use '' for an AI server serving models from a local folder. | |
# Use a path to a JSON file for a single model zoo in case of @local inference. | |
face_model_zoo_url = "https://cs.degirum.com/degirum/ultralytics_v6" | |
# face_model_name: Name of the model for face detection. | |
face_model_name = "yolov8n_relu6_face--640x640_quant_n2x_orca1_1" | |
# gender_model_zoo_url: URL/path for the gender model zoo. | |
gender_model_zoo_url = "https://cs.degirum.com/degirum/Yolov8-cls" | |
# gender_model_name: Name of the model for gender detection. | |
gender_model_name = "gender_v8n--256x256_quant_n2x_orca1_1" | |
# Connect to AI inference engine getting token from env.ini file | |
face_zoo = dg.connect(hw_location, face_model_zoo_url, token=st.secrets["DG_TOKEN"]) | |
gender_zoo = dg.connect(hw_location, gender_model_zoo_url, token=st.secrets["DG_TOKEN"]) | |
# Load models | |
face_model = face_zoo.load_model(face_model_name, | |
image_backend='pil', | |
overlay_color=(255,0,0), | |
overlay_line_width=2, | |
overlay_font_scale=1.5 | |
) | |
gender_model= gender_zoo.load_model(gender_model_name, image_backend='pil') | |
# Create a compound cropping model with 50% crop extent | |
crop_model = degirum_tools.CroppingAndClassifyingCompoundModel( | |
face_model, gender_model, 50.0 | |
) | |
st.title('DeGirum Cloud Platform Demo of Face Detection and Gender Classification Models') | |
st.text('Upload an image. Then click on the submit button') | |
with st.form("model_form"): | |
uploaded_file=st.file_uploader('input image') | |
submitted = st.form_submit_button("Submit") | |
if submitted: | |
image = Image.open(uploaded_file) | |
image.thumbnail((640,640), Image.Resampling.LANCZOS) | |
inference_results=crop_model(image) | |
st.image(inference_results.image_overlay,caption='Image with Bounding Boxes') |