Spaces:
Sleeping
Sleeping
nei10u
commited on
Commit
•
464c12b
1
Parent(s):
c8255da
add comic style of img2img
Browse files- app.py +20 -5
- comic_style/comic_style.py +118 -0
- comic_style/face_detection.py +145 -0
- comic_style/u2net_bce_itr_16000_train_3.835149_tar_0.542587-400x_360x.jit.pt +3 -0
- example1.jpeg +0 -0
- example2.jpg +0 -0
- gradio_cached_examples/7/Comic Style/tmp0b1q0lm4.png +0 -0
- gradio_cached_examples/7/log.csv +2 -0
- gradio_cached_examples/8/Comic Style/tmpcujjjff9.png +0 -0
- gradio_cached_examples/8/log.csv +2 -0
- packages.txt +2 -1
- requirements.txt +7 -1
app.py
CHANGED
@@ -1,10 +1,15 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import translators as ts
|
|
|
3 |
from PIL import Image
|
4 |
-
from gradio import Blocks, Markdown, Button, Textbox, Row, Column, Dropdown,
|
5 |
from langchain import Cohere, LLMChain, PromptTemplate
|
6 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
7 |
|
|
|
|
|
8 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
9 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
10 |
|
@@ -16,7 +21,7 @@ def translate_into_cn(source):
|
|
16 |
|
17 |
|
18 |
def predict_step(cohere_key, img, style):
|
19 |
-
i_image = Image.fromarray(
|
20 |
|
21 |
pixel_values = processor(images=i_image, return_tensors="pt", max_length=1024, verbose=True).pixel_values
|
22 |
|
@@ -43,11 +48,18 @@ def predict_step(cohere_key, img, style):
|
|
43 |
|
44 |
|
45 |
with Blocks() as demo:
|
46 |
-
Markdown("图生文")
|
47 |
with Row():
|
48 |
with Column():
|
49 |
cohere_key = gr.Text(label="cohere key:")
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
dropdown = Dropdown(
|
52 |
["Shakespeare", "luxun", "xuzhimo", "moyan", "laoshe"],
|
53 |
label="Style",
|
@@ -57,8 +69,11 @@ with Blocks() as demo:
|
|
57 |
with Column():
|
58 |
prediction_output = Textbox(label="Prediction")
|
59 |
essay_output = Textbox(label="Essay")
|
|
|
60 |
# Step 1
|
61 |
-
|
|
|
|
|
62 |
api_name="essay_generate")
|
63 |
|
64 |
demo.launch(debug=True)
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import translators as ts
|
5 |
+
import numpy as np
|
6 |
from PIL import Image
|
7 |
+
from gradio import Blocks, Markdown, Button, Textbox, Row, Column, Dropdown, Examples
|
8 |
from langchain import Cohere, LLMChain, PromptTemplate
|
9 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
10 |
|
11 |
+
from comic_style.comic_style import inference
|
12 |
+
|
13 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
14 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
15 |
|
|
|
21 |
|
22 |
|
23 |
def predict_step(cohere_key, img, style):
|
24 |
+
i_image = Image.fromarray(np.array(img), 'RGB')
|
25 |
|
26 |
pixel_values = processor(images=i_image, return_tensors="pt", max_length=1024, verbose=True).pixel_values
|
27 |
|
|
|
48 |
|
49 |
|
50 |
with Blocks() as demo:
|
|
|
51 |
with Row():
|
52 |
with Column():
|
53 |
cohere_key = gr.Text(label="cohere key:")
|
54 |
+
with Row():
|
55 |
+
image_upload = gr.Image(type="pil")
|
56 |
+
comic_style_output = gr.Image(type="pil", label="Comic Style")
|
57 |
+
Examples(
|
58 |
+
examples=[os.path.join(os.path.dirname(__file__), "example1.jpeg"),
|
59 |
+
os.path.join(os.path.dirname(__file__), "example2.jpg")],
|
60 |
+
fn=inference,
|
61 |
+
inputs=image_upload,
|
62 |
+
)
|
63 |
dropdown = Dropdown(
|
64 |
["Shakespeare", "luxun", "xuzhimo", "moyan", "laoshe"],
|
65 |
label="Style",
|
|
|
69 |
with Column():
|
70 |
prediction_output = Textbox(label="Prediction")
|
71 |
essay_output = Textbox(label="Essay")
|
72 |
+
|
73 |
# Step 1
|
74 |
+
image_upload.change(fn=inference, inputs=image_upload, outputs=comic_style_output)
|
75 |
+
# Step 2
|
76 |
+
essay_btn.click(fn=predict_step, inputs=[cohere_key, image_upload, dropdown], outputs=[prediction_output, essay_output],
|
77 |
api_name="essay_generate")
|
78 |
|
79 |
demo.launch(debug=True)
|
comic_style/comic_style.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2 as cv
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image, ImageOps
|
5 |
+
|
6 |
+
from comic_style.face_detection import align
|
7 |
+
|
8 |
+
torch.set_grad_enabled(False)
|
9 |
+
model = torch.jit.load('comic_style/u2net_bce_itr_16000_train_3.835149_tar_0.542587-400x_360x.jit.pt')
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
|
13 |
+
# https://en.wikipedia.org/wiki/Unsharp_masking
|
14 |
+
# https://stackoverflow.com/a/55590133/1495606
|
15 |
+
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0):
|
16 |
+
"""Return a sharpened version of the image, using an unsharp mask."""
|
17 |
+
blurred = cv.GaussianBlur(image, kernel_size, sigma)
|
18 |
+
sharpened = float(amount + 1) * image - float(amount) * blurred
|
19 |
+
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
|
20 |
+
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
|
21 |
+
sharpened = sharpened.round().astype(np.uint8)
|
22 |
+
if threshold > 0:
|
23 |
+
low_contrast_mask = np.absolute(image - blurred) < threshold
|
24 |
+
np.copyto(sharpened, image, where=low_contrast_mask)
|
25 |
+
return sharpened
|
26 |
+
|
27 |
+
|
28 |
+
def normPRED(d):
|
29 |
+
ma = np.max(d)
|
30 |
+
mi = np.min(d)
|
31 |
+
|
32 |
+
dn = (d - mi) / (ma - mi)
|
33 |
+
|
34 |
+
return dn
|
35 |
+
|
36 |
+
|
37 |
+
def array_to_np(array_in):
|
38 |
+
array_in = normPRED(array_in)
|
39 |
+
array_in = np.squeeze(255.0 * (array_in))
|
40 |
+
array_in = np.transpose(array_in, (1, 2, 0))
|
41 |
+
return array_in
|
42 |
+
|
43 |
+
|
44 |
+
def array_to_image(array_in):
|
45 |
+
array_in = normPRED(array_in)
|
46 |
+
array_in = np.squeeze(255.0 * (array_in))
|
47 |
+
array_in = np.transpose(array_in, (1, 2, 0))
|
48 |
+
im = Image.fromarray(array_in.astype(np.uint8))
|
49 |
+
return im
|
50 |
+
|
51 |
+
|
52 |
+
def image_as_array(image_in):
|
53 |
+
image_in = np.array(image_in, np.float32)
|
54 |
+
tmpImg = np.zeros((image_in.shape[0], image_in.shape[1], 3))
|
55 |
+
image_in = image_in / np.max(image_in)
|
56 |
+
if image_in.shape[2] == 1:
|
57 |
+
tmpImg[:, :, 0] = (image_in[:, :, 0] - 0.485) / 0.229
|
58 |
+
tmpImg[:, :, 1] = (image_in[:, :, 0] - 0.485) / 0.229
|
59 |
+
tmpImg[:, :, 2] = (image_in[:, :, 0] - 0.485) / 0.229
|
60 |
+
else:
|
61 |
+
tmpImg[:, :, 0] = (image_in[:, :, 0] - 0.485) / 0.229
|
62 |
+
tmpImg[:, :, 1] = (image_in[:, :, 1] - 0.456) / 0.224
|
63 |
+
tmpImg[:, :, 2] = (image_in[:, :, 2] - 0.406) / 0.225
|
64 |
+
|
65 |
+
tmpImg = tmpImg.transpose((2, 0, 1))
|
66 |
+
image_out = np.expand_dims(tmpImg, 0)
|
67 |
+
return image_out
|
68 |
+
|
69 |
+
|
70 |
+
def find_aligned_face(image_in, size=400):
|
71 |
+
aligned_image, n_faces, quad = align(image_in, face_index=0, output_size=size)
|
72 |
+
return aligned_image, n_faces, quad
|
73 |
+
|
74 |
+
|
75 |
+
def align_first_face(image_in, size=400):
|
76 |
+
aligned_image, n_faces, quad = find_aligned_face(image_in, size=size)
|
77 |
+
if n_faces == 0:
|
78 |
+
try:
|
79 |
+
image_in = ImageOps.exif_transpose(image_in)
|
80 |
+
except:
|
81 |
+
print("exif problem, not rotating")
|
82 |
+
image_in = image_in.resize((size, size))
|
83 |
+
im_array = image_as_array(image_in)
|
84 |
+
else:
|
85 |
+
im_array = image_as_array(aligned_image)
|
86 |
+
|
87 |
+
return im_array
|
88 |
+
|
89 |
+
|
90 |
+
def img_concat_h(im1, im2):
|
91 |
+
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
|
92 |
+
dst.paste(im1, (0, 0))
|
93 |
+
dst.paste(im2, (im1.width, 0))
|
94 |
+
return dst
|
95 |
+
|
96 |
+
|
97 |
+
def face2hero(
|
98 |
+
img: Image.Image,
|
99 |
+
size: int
|
100 |
+
) -> Image.Image:
|
101 |
+
aligned_img = align_first_face(img)
|
102 |
+
if aligned_img is None:
|
103 |
+
output = None
|
104 |
+
else:
|
105 |
+
input = torch.Tensor(aligned_img)
|
106 |
+
results = model(input)
|
107 |
+
hero_np_image = array_to_np(results[1].detach().numpy())
|
108 |
+
hero_image = unsharp_mask(hero_np_image)
|
109 |
+
hero_image = Image.fromarray(hero_image)
|
110 |
+
# hero_image = hero_image.resize((int(hero_image.width * 0.3), int(hero_image.height * 0.3)), Image.ANTIALIAS)
|
111 |
+
# output = img_concat_h(array_to_image(aligned_img), hero_image)
|
112 |
+
del results
|
113 |
+
return hero_image
|
114 |
+
|
115 |
+
|
116 |
+
def inference(img):
|
117 |
+
out = face2hero(img, 400)
|
118 |
+
return out
|
comic_style/face_detection.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 Justin Pinkney
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import dlib
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from PIL import ImageOps
|
8 |
+
from scipy.ndimage import gaussian_filter
|
9 |
+
|
10 |
+
MODEL_PATH = "comic_style/shape_predictor_5_face_landmarks.dat"
|
11 |
+
detector = dlib.get_frontal_face_detector()
|
12 |
+
|
13 |
+
|
14 |
+
def align(image_in, face_index=0, output_size=256):
|
15 |
+
try:
|
16 |
+
image_in = ImageOps.exif_transpose(image_in)
|
17 |
+
except:
|
18 |
+
print("exif problem, not rotating")
|
19 |
+
|
20 |
+
landmarks = list(get_landmarks(image_in))
|
21 |
+
n_faces = len(landmarks)
|
22 |
+
face_index = min(n_faces - 1, face_index)
|
23 |
+
if n_faces == 0:
|
24 |
+
aligned_image = image_in
|
25 |
+
quad = None
|
26 |
+
else:
|
27 |
+
aligned_image, quad = image_align(image_in, landmarks[face_index], output_size=output_size)
|
28 |
+
|
29 |
+
return aligned_image, n_faces, quad
|
30 |
+
|
31 |
+
|
32 |
+
def composite_images(quad, img, output):
|
33 |
+
"""Composite an image into and output canvas according to transformed co-ords"""
|
34 |
+
output = output.convert("RGBA")
|
35 |
+
img = img.convert("RGBA")
|
36 |
+
input_size = img.size
|
37 |
+
src = np.array(((0, 0), (0, input_size[1]), input_size, (input_size[0], 0)), dtype=np.float32)
|
38 |
+
dst = np.float32(quad)
|
39 |
+
mtx = cv2.getPerspectiveTransform(dst, src)
|
40 |
+
img = img.transform(output.size, Image.PERSPECTIVE, mtx.flatten(), Image.BILINEAR)
|
41 |
+
output.alpha_composite(img)
|
42 |
+
|
43 |
+
return output.convert("RGB")
|
44 |
+
|
45 |
+
|
46 |
+
def get_landmarks(image):
|
47 |
+
"""Get landmarks from PIL image"""
|
48 |
+
shape_predictor = dlib.shape_predictor(MODEL_PATH)
|
49 |
+
|
50 |
+
max_size = max(image.size)
|
51 |
+
reduction_scale = int(max_size / 512)
|
52 |
+
if reduction_scale == 0:
|
53 |
+
reduction_scale = 1
|
54 |
+
downscaled = image.reduce(reduction_scale)
|
55 |
+
img = np.array(downscaled)
|
56 |
+
detections = detector(img, 0)
|
57 |
+
|
58 |
+
for detection in detections:
|
59 |
+
try:
|
60 |
+
face_landmarks = [(reduction_scale * item.x, reduction_scale * item.y) for item in
|
61 |
+
shape_predictor(img, detection).parts()]
|
62 |
+
yield face_landmarks
|
63 |
+
except Exception as e:
|
64 |
+
print(e)
|
65 |
+
|
66 |
+
|
67 |
+
def image_align(src_img, face_landmarks, output_size=512, transform_size=2048, enable_padding=True, x_scale=1, y_scale=1,
|
68 |
+
em_scale=0.1, alpha=False):
|
69 |
+
# Align function modified from ffhq-dataset
|
70 |
+
# See https://github.com/NVlabs/ffhq-dataset for license
|
71 |
+
|
72 |
+
lm = np.array(face_landmarks)
|
73 |
+
lm_eye_left = lm[2:3] # left-clockwise
|
74 |
+
lm_eye_right = lm[0:1] # left-clockwise
|
75 |
+
|
76 |
+
# Calculate auxiliary vectors.
|
77 |
+
eye_left = np.mean(lm_eye_left, axis=0)
|
78 |
+
eye_right = np.mean(lm_eye_right, axis=0)
|
79 |
+
eye_avg = (eye_left + eye_right) * 0.5
|
80 |
+
eye_to_eye = 0.71 * (eye_right - eye_left)
|
81 |
+
mouth_avg = lm[4]
|
82 |
+
eye_to_mouth = 1.35 * (mouth_avg - eye_avg)
|
83 |
+
|
84 |
+
# Choose oriented crop rectangle.
|
85 |
+
x = eye_to_eye.copy()
|
86 |
+
x /= np.hypot(*x)
|
87 |
+
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
88 |
+
x *= x_scale
|
89 |
+
y = np.flipud(x) * [-y_scale, y_scale]
|
90 |
+
c = eye_avg + eye_to_mouth * em_scale
|
91 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
92 |
+
quad_orig = quad.copy()
|
93 |
+
qsize = np.hypot(*x) * 2
|
94 |
+
|
95 |
+
img = src_img.convert('RGBA').convert('RGB')
|
96 |
+
|
97 |
+
# Shrink.
|
98 |
+
shrink = int(np.floor(qsize / output_size * 0.5))
|
99 |
+
if shrink > 1:
|
100 |
+
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
101 |
+
img = img.resize(rsize, Image.ANTIALIAS)
|
102 |
+
quad /= shrink
|
103 |
+
qsize /= shrink
|
104 |
+
|
105 |
+
# Crop.
|
106 |
+
border = max(int(np.rint(qsize * 0.1)), 3)
|
107 |
+
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
108 |
+
int(np.ceil(max(quad[:, 1]))))
|
109 |
+
crop = (
|
110 |
+
max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
|
111 |
+
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
112 |
+
img = img.crop(crop)
|
113 |
+
quad -= crop[0:2]
|
114 |
+
|
115 |
+
# Pad.
|
116 |
+
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
117 |
+
int(np.ceil(max(quad[:, 1]))))
|
118 |
+
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
|
119 |
+
max(pad[3] - img.size[1] + border, 0))
|
120 |
+
if enable_padding and max(pad) > border - 4:
|
121 |
+
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
122 |
+
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
123 |
+
h, w, _ = img.shape
|
124 |
+
y, x, _ = np.ogrid[:h, :w, :1]
|
125 |
+
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
|
126 |
+
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
|
127 |
+
blur = qsize * 0.02
|
128 |
+
img += (gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
129 |
+
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
|
130 |
+
img = np.uint8(np.clip(np.rint(img), 0, 255))
|
131 |
+
if alpha:
|
132 |
+
mask = 1 - np.clip(3.0 * mask, 0.0, 1.0)
|
133 |
+
mask = np.uint8(np.clip(np.rint(mask * 255), 0, 255))
|
134 |
+
img = np.concatenate((img, mask), axis=2)
|
135 |
+
img = Image.fromarray(img, 'RGBA')
|
136 |
+
else:
|
137 |
+
img = Image.fromarray(img, 'RGB')
|
138 |
+
quad += pad[:2]
|
139 |
+
|
140 |
+
# Transform.
|
141 |
+
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
|
142 |
+
if output_size < transform_size:
|
143 |
+
img = img.resize((output_size, output_size), Image.ANTIALIAS)
|
144 |
+
|
145 |
+
return img, quad_orig
|
comic_style/u2net_bce_itr_16000_train_3.835149_tar_0.542587-400x_360x.jit.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3cf228cb02287a658a4a2b06ba89e6e02a702890e8ed7554dfc1586a5a3ee00
|
3 |
+
size 177234648
|
example1.jpeg
ADDED
example2.jpg
ADDED
gradio_cached_examples/7/Comic Style/tmp0b1q0lm4.png
ADDED
gradio_cached_examples/7/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Comic Style,flag,username,timestamp
|
2 |
+
/Users/liangou/Workspace/python/ai-mixer-blip/gradio_cached_examples/7/Comic Style/tmp0b1q0lm4.png,,,2023-07-26 01:12:44.435105
|
gradio_cached_examples/8/Comic Style/tmpcujjjff9.png
ADDED
gradio_cached_examples/8/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Comic Style,flag,username,timestamp
|
2 |
+
/Users/liangou/Workspace/python/ai-mixer-blip/gradio_cached_examples/8/Comic Style/tmpcujjjff9.png,,,2023-07-26 01:17:30.589130
|
packages.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
nodejs
|
|
|
|
1 |
+
nodejs
|
2 |
+
ffmpeg
|
requirements.txt
CHANGED
@@ -6,4 +6,10 @@ torch==2.0.1
|
|
6 |
torchvision==0.15.2
|
7 |
cohere==4.8.0
|
8 |
pyexecjs==1.5.1
|
9 |
-
nodejs==0.1.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
torchvision==0.15.2
|
7 |
cohere==4.8.0
|
8 |
pyexecjs==1.5.1
|
9 |
+
nodejs==0.1.1
|
10 |
+
numpy==1.22.0
|
11 |
+
opencv-python-headless
|
12 |
+
scikit-image
|
13 |
+
scipy
|
14 |
+
cmake
|
15 |
+
dlib
|