Spaces:
Runtime error
Runtime error
Commit
·
c24940a
1
Parent(s):
d26c2ca
made changes
Browse files- .streamlit/config.toml +10 -0
- app.py +50 -28
- backend_utils.py +13 -17
.streamlit/config.toml
CHANGED
|
@@ -1,3 +1,13 @@
|
|
| 1 |
[theme]
|
| 2 |
base = "light"
|
| 3 |
font="monospace"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
[theme]
|
| 2 |
base = "light"
|
| 3 |
font="monospace"
|
| 4 |
+
[global]
|
| 5 |
+
|
| 6 |
+
# By default, Streamlit checks if the Python watchdog module is available and, if not, prints a warning asking for you to install it. The watchdog module is not required, but highly recommended. It improves Streamlit's ability to detect changes to files in your filesystem.
|
| 7 |
+
# If you'd like to turn off this warning, set this to True.
|
| 8 |
+
# Default: false
|
| 9 |
+
disableWatchdogWarning = true
|
| 10 |
+
|
| 11 |
+
# If True, will show a warning when you run a Streamlit-enabled script via "python my_script.py".
|
| 12 |
+
# Default: true
|
| 13 |
+
showWarningOnDirectExecution = false
|
app.py
CHANGED
|
@@ -1,59 +1,81 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from backend_utils import
|
|
|
|
| 3 |
|
| 4 |
-
st.
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
placeholder = st.empty()
|
| 13 |
with placeholder:
|
| 14 |
search_bar, button = st.columns([3, 1])
|
| 15 |
with search_bar:
|
| 16 |
-
username = st.text_area(f"", max_chars=200, key='query')
|
| 17 |
|
| 18 |
with button:
|
| 19 |
-
st.write("")
|
| 20 |
-
st.write("")
|
| 21 |
run_pressed = st.button("Run")
|
| 22 |
|
| 23 |
-
st.
|
| 24 |
-
|
| 25 |
-
# st.sidebar.selectbox(
|
| 26 |
-
# "Example Questions:",
|
| 27 |
-
# QUERIES,
|
| 28 |
-
# key='q_drop_down', on_change=set_question)
|
| 29 |
|
|
|
|
|
|
|
| 30 |
c1, c2, c3, c4, c5 = st.columns(5)
|
| 31 |
with c1:
|
| 32 |
-
st.button(
|
| 33 |
with c2:
|
| 34 |
-
st.button(
|
| 35 |
with c3:
|
| 36 |
-
st.button(
|
| 37 |
with c4:
|
| 38 |
-
st.button(
|
| 39 |
with c5:
|
| 40 |
-
st.button(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
st.markdown("<
|
| 43 |
placeholder_plain_gpt = st.empty()
|
| 44 |
-
st.text("")
|
| 45 |
-
st.text("")
|
| 46 |
-
st.markdown(f"<
|
| 47 |
placeholder_retrieval_augmented = st.empty()
|
| 48 |
|
| 49 |
if st.session_state.get('query') and run_pressed:
|
| 50 |
input = st.session_state['query']
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
| 53 |
placeholder_plain_gpt.markdown(answers['results'][0])
|
| 54 |
|
| 55 |
if st.session_state.get("query_type", "Retrieval Augmented") == "Retrieval Augmented":
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
else:
|
|
|
|
| 58 |
answers_2 = p3.run(input)
|
| 59 |
placeholder_retrieval_augmented.markdown(answers_2['results'][0])
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from backend_utils import (get_plain_pipeline, get_retrieval_augmented_pipeline,
|
| 3 |
+
get_web_retrieval_augmented_pipeline, set_q1, set_q2, set_q3, set_q4, set_q5, QUERIES)
|
| 4 |
|
| 5 |
+
st.set_page_config(
|
| 6 |
+
page_title="Retrieval Augmentation with Haystack",
|
| 7 |
+
)
|
| 8 |
|
| 9 |
+
st.markdown("<center> <h2> Reduce Hallucinations with Retrieval Augmentation </h2> </center>", unsafe_allow_html=True)
|
| 10 |
+
|
| 11 |
+
st.markdown("Ask a question about the collapse of the Silicon Valley Bank (SVB).", unsafe_allow_html=True)
|
| 12 |
+
|
| 13 |
+
# if not st.session_state.get('pipelines_loaded', False):
|
| 14 |
+
# with st.spinner('Loading pipelines... \n This may take a few mins and might also fail if OpenAI API server is down.'):
|
| 15 |
+
# p1, p2, p3 = app_init()
|
| 16 |
+
# st.success('Pipelines are loaded', icon="✅")
|
| 17 |
+
# st.session_state['pipelines_loaded'] = True
|
| 18 |
|
| 19 |
placeholder = st.empty()
|
| 20 |
with placeholder:
|
| 21 |
search_bar, button = st.columns([3, 1])
|
| 22 |
with search_bar:
|
| 23 |
+
username = st.text_area(f" ", max_chars=200, key='query')
|
| 24 |
|
| 25 |
with button:
|
| 26 |
+
st.write(" ")
|
| 27 |
+
st.write(" ")
|
| 28 |
run_pressed = st.button("Run")
|
| 29 |
|
| 30 |
+
st.markdown("<center> <h5> Example questions </h5> </center>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
st.write(" ")
|
| 33 |
+
st.write(" ")
|
| 34 |
c1, c2, c3, c4, c5 = st.columns(5)
|
| 35 |
with c1:
|
| 36 |
+
st.button(QUERIES[0], on_click=set_q1)
|
| 37 |
with c2:
|
| 38 |
+
st.button(QUERIES[1], on_click=set_q2)
|
| 39 |
with c3:
|
| 40 |
+
st.button(QUERIES[2], on_click=set_q3)
|
| 41 |
with c4:
|
| 42 |
+
st.button(QUERIES[3], on_click=set_q4)
|
| 43 |
with c5:
|
| 44 |
+
st.button(QUERIES[4], on_click=set_q5)
|
| 45 |
+
|
| 46 |
+
st.write(" ")
|
| 47 |
+
st.radio("Answer Type:", ("Retrieval Augmented (Static news dataset)", "Retrieval Augmented with Web Search"), key="query_type")
|
| 48 |
+
|
| 49 |
+
# st.sidebar.selectbox(
|
| 50 |
+
# "Example Questions:",
|
| 51 |
+
# QUERIES,
|
| 52 |
+
# key='q_drop_down', on_change=set_question)
|
| 53 |
|
| 54 |
+
st.markdown("<h5> Answer with GPT's Internal Knowledge </h5>", unsafe_allow_html=True)
|
| 55 |
placeholder_plain_gpt = st.empty()
|
| 56 |
+
st.text(" ")
|
| 57 |
+
st.text(" ")
|
| 58 |
+
st.markdown(f"<h5> Answer with {st.session_state['query_type']} </h5>", unsafe_allow_html=True)
|
| 59 |
placeholder_retrieval_augmented = st.empty()
|
| 60 |
|
| 61 |
if st.session_state.get('query') and run_pressed:
|
| 62 |
input = st.session_state['query']
|
| 63 |
+
with st.spinner('Loading pipelines... \n This may take a few mins and might also fail if OpenAI API server is down.'):
|
| 64 |
+
p1 = get_plain_pipeline()
|
| 65 |
+
with st.spinner('Fetching answers from GPT\'s internal knowledge... '
|
| 66 |
+
'\n This may take a few mins and might also fail if OpenAI API server is down.'):
|
| 67 |
+
answers = p1.run(input)
|
| 68 |
placeholder_plain_gpt.markdown(answers['results'][0])
|
| 69 |
|
| 70 |
if st.session_state.get("query_type", "Retrieval Augmented") == "Retrieval Augmented":
|
| 71 |
+
with st.spinner(
|
| 72 |
+
'Loading Retrieval Augmented pipeline... \
|
| 73 |
+
n This may take a few mins and might also fail if OpenAI API server is down.'):
|
| 74 |
+
p2 = get_retrieval_augmented_pipeline()
|
| 75 |
+
with st.spinner('Fetching relevant documents from documented stores and calculating answers... '
|
| 76 |
+
'\n This may take a few mins and might also fail if OpenAI API server is down.'):
|
| 77 |
+
answers_2 = p2.run(input)
|
| 78 |
else:
|
| 79 |
+
p3 = get_web_retrieval_augmented_pipeline()
|
| 80 |
answers_2 = p3.run(input)
|
| 81 |
placeholder_retrieval_augmented.markdown(answers_2['results'][0])
|
backend_utils.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
import streamlit as st
|
| 4 |
from haystack import Pipeline
|
| 5 |
from haystack.document_stores import FAISSDocumentStore
|
|
@@ -15,14 +13,8 @@ QUERIES = [
|
|
| 15 |
"When did SVB collapse?"
|
| 16 |
]
|
| 17 |
|
| 18 |
-
def ChangeWidgetFontSize(wgt_txt, wch_font_size = '12px'):
|
| 19 |
-
htmlstr = """<script>var elements = window.parent.document.querySelectorAll('*'), i;
|
| 20 |
-
for (i = 0; i < elements.length; ++i) { if (elements[i].innerText == |wgt_txt|)
|
| 21 |
-
{ elements[i].style.fontSize='""" + wch_font_size + """';} } </script> """
|
| 22 |
-
|
| 23 |
-
htmlstr = htmlstr.replace('|wgt_txt|', "'" + wgt_txt + "'")
|
| 24 |
-
|
| 25 |
|
|
|
|
| 26 |
def get_plain_pipeline():
|
| 27 |
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"])
|
| 28 |
# Now let make one PromptNode use the default model and the other one the OpenAI model:
|
|
@@ -33,6 +25,7 @@ def get_plain_pipeline():
|
|
| 33 |
return pipeline
|
| 34 |
|
| 35 |
|
|
|
|
| 36 |
def get_retrieval_augmented_pipeline():
|
| 37 |
ds = FAISSDocumentStore(faiss_index_path="data/my_faiss_index.faiss",
|
| 38 |
faiss_config_path="data/my_faiss_index.json")
|
|
@@ -62,6 +55,7 @@ def get_retrieval_augmented_pipeline():
|
|
| 62 |
return pipeline
|
| 63 |
|
| 64 |
|
|
|
|
| 65 |
def get_web_retrieval_augmented_pipeline():
|
| 66 |
search_key = st.secrets["WEBRET_API_KEY"]
|
| 67 |
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
|
|
@@ -82,13 +76,16 @@ def get_web_retrieval_augmented_pipeline():
|
|
| 82 |
return pipeline
|
| 83 |
|
| 84 |
|
| 85 |
-
@st.cache_resource(show_spinner=False)
|
| 86 |
-
def app_init():
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
if 'query' not in st.session_state:
|
|
@@ -117,4 +114,3 @@ def set_q4():
|
|
| 117 |
|
| 118 |
def set_q5():
|
| 119 |
st.session_state['query'] = QUERIES[4]
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from haystack import Pipeline
|
| 3 |
from haystack.document_stores import FAISSDocumentStore
|
|
|
|
| 13 |
"When did SVB collapse?"
|
| 14 |
]
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
@st.cache_resource(show_spinner=False)
|
| 18 |
def get_plain_pipeline():
|
| 19 |
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"])
|
| 20 |
# Now let make one PromptNode use the default model and the other one the OpenAI model:
|
|
|
|
| 25 |
return pipeline
|
| 26 |
|
| 27 |
|
| 28 |
+
@st.cache_resource(show_spinner=False)
|
| 29 |
def get_retrieval_augmented_pipeline():
|
| 30 |
ds = FAISSDocumentStore(faiss_index_path="data/my_faiss_index.faiss",
|
| 31 |
faiss_config_path="data/my_faiss_index.json")
|
|
|
|
| 55 |
return pipeline
|
| 56 |
|
| 57 |
|
| 58 |
+
@st.cache_resource(show_spinner=False)
|
| 59 |
def get_web_retrieval_augmented_pipeline():
|
| 60 |
search_key = st.secrets["WEBRET_API_KEY"]
|
| 61 |
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
|
|
|
|
| 76 |
return pipeline
|
| 77 |
|
| 78 |
|
| 79 |
+
# @st.cache_resource(show_spinner=False)
|
| 80 |
+
# def app_init():
|
| 81 |
+
# print("Loading Pipelines...")
|
| 82 |
+
# p1 = get_plain_pipeline()
|
| 83 |
+
# print("Loaded Plain Pipeline")
|
| 84 |
+
# p2 = get_retrieval_augmented_pipeline()
|
| 85 |
+
# print("Loaded Retrieval Augmented Pipeline")
|
| 86 |
+
# p3 = get_web_retrieval_augmented_pipeline()
|
| 87 |
+
# print("Loaded Web Retrieval Augmented Pipeline")
|
| 88 |
+
# return p1, p2, p3
|
| 89 |
|
| 90 |
|
| 91 |
if 'query' not in st.session_state:
|
|
|
|
| 114 |
|
| 115 |
def set_q5():
|
| 116 |
st.session_state['query'] = QUERIES[4]
|
|
|