Nealeon's picture
chore: rebase commits
79cf446
raw
history blame
11.7 kB
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
From https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
"""
import dataclasses
from enum import IntEnum, auto
from typing import Dict, List
class SeparatorStyle(IntEnum):
"""Separator styles."""
ADD_COLON_SINGLE = auto()
ADD_COLON_TWO = auto()
ADD_COLON_SPACE_SINGLE = auto()
NO_COLON_SINGLE = auto()
NO_COLON_TWO = auto()
ADD_NEW_LINE_SINGLE = auto()
LLAMA2 = auto()
CHATGLM = auto()
CHATML = auto()
CHATINTERN = auto()
DOLLY = auto()
RWKV = auto()
PHOENIX = auto()
ROBIN = auto()
DeepSeek = auto()
PLAIN = auto()
ALIGNMENT = auto()
@dataclasses.dataclass
class Conversation:
"""A class that manages prompt templates and keeps all conversation history."""
# The name of this template
name: str
# The template of the system prompt
system_template: str = "{system_message}"
# The system message
system_message: str = ""
# The names of two roles
roles: List[str] = (("USER", "ASSISTANT"),)
# All messages. Each item is (role, message).
messages: List[List[str]] = ()
# The number of few shot examples
offset: int = 0
# The separator style and configurations
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
sep: str = "\n"
sep2: str = None
# Stop criteria (the default one is EOS token)
stop_str: str = None
# Stops generation if meeting any token in this list
stop_token_ids: List[int] = None
def get_prompt(self) -> str:
"""Get the prompt for generation."""
system_prompt = self.system_template.format(system_message=self.system_message)
if self.sep_style == SeparatorStyle.DeepSeek:
seps = [self.sep, self.sep2]
if system_prompt == "" or system_prompt is None:
ret = ""
else:
ret = system_prompt + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.LLAMA2:
seps = [self.sep, self.sep2]
if self.system_message:
ret = system_prompt
else:
ret = "[INST] "
for i, (role, message) in enumerate(self.messages):
tag = self.roles[i % 2]
if message:
if type(message) is tuple: # multimodal message
message, _ = message
if i == 0:
ret += message + " "
else:
ret += tag + " " + message + seps[i % 2]
else:
ret += tag
return ret
elif self.sep_style == SeparatorStyle.PLAIN:
seps = [self.sep, self.sep2]
ret = ""
for i, (role, message) in enumerate(self.messages):
if message:
if type(message) is tuple:
message, _, _ = message
if i % 2 == 0:
ret += message + seps[i % 2]
else:
ret += message + seps[i % 2]
else:
ret += ""
return ret
elif self.sep_style == SeparatorStyle.ALIGNMENT:
seps = [self.sep, self.sep2]
ret = ""
for i, (role, message) in enumerate(self.messages):
if message:
if type(message) is tuple:
message, _, _ = message
if i % 2 == 0:
ret += "<image>\n" + seps[i % 2]
else:
ret += message + seps[i % 2]
else:
ret += ""
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def get_prompt_for_current_round(self, content=None):
"""Get current round formatted question prompt during sft training"""
if self.sep_style == SeparatorStyle.PLAIN:
formatted_question = "<image>\n"
elif self.sep_style == SeparatorStyle.DeepSeek:
formatted_question = (
f"{self.roles[0]}: " + content.strip() + self.sep + f"{self.roles[1]}:"
)
else:
raise ValueError(f"Unsupported sep_style: {self.sep_style}")
return formatted_question
def set_system_message(self, system_message: str):
"""Set the system message."""
self.system_message = system_message
def append_message(self, role: str, message: str):
"""Append a new message."""
self.messages.append([role, message])
def reset_message(self):
"""Reset a new message."""
self.messages = []
def update_last_message(self, message: str):
"""Update the last output.
The last message is typically set to be None when constructing the prompt,
so we need to update it in-place after getting the response from a model.
"""
self.messages[-1][1] = message
def to_gradio_chatbot(self):
"""Convert the conversation to gradio chatbot format."""
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def to_openai_api_messages(self):
"""Convert the conversation to OpenAI chat completion format."""
system_prompt = self.system_template.format(system_message=self.system_message)
ret = [{"role": "system", "content": system_prompt}]
for i, (_, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
ret.append({"role": "user", "content": msg})
else:
if msg is not None:
ret.append({"role": "assistant", "content": msg})
return ret
def copy(self):
return Conversation(
name=self.name,
system_template=self.system_template,
system_message=self.system_message,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
stop_str=self.stop_str,
stop_token_ids=self.stop_token_ids,
)
def dict(self):
return {
"template_name": self.name,
"system_message": self.system_message,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
}
# A global registry for all conversation templates
conv_templates: Dict[str, Conversation] = {}
def register_conv_template(template: Conversation, override: bool = False):
"""Register a new conversation template."""
if not override:
assert (
template.name not in conv_templates
), f"{template.name} has been registered."
conv_templates[template.name] = template
def get_conv_template(name: str) -> Conversation:
"""Get a conversation template."""
return conv_templates[name].copy()
# llava_llama2 template
register_conv_template(
Conversation(
name="llava_llama2",
system_message="You are a helpful language and vision assistant. "
"You are able to understand the visual content that the user provides, "
"and assist the user with a variety of tasks using natural language.",
system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
roles=("[INST]", "[/INST]"),
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA2,
sep=" ",
sep2=" </s><s>",
stop_token_ids=[2],
)
)
# llama2 template
# reference: https://github.com/facebookresearch/llama/blob/cfc3fc8c1968d390eb830e65c63865e980873a06/llama/generation.py#L212
register_conv_template(
Conversation(
name="llama-2",
system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
roles=("[INST]", "[/INST]"),
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA2,
sep=" ",
sep2=" </s><s>",
stop_token_ids=[2],
)
)
# deepseek template
register_conv_template(
Conversation(
name="deepseek",
system_template="{system_message}",
# system_message="You are a helpful assistant. Please answer truthfully and write out your "
# "thinking step by step to be sure you get the right answer.",
system_message="",
roles=("User", "Assistant"),
messages=(),
offset=0,
sep_style=SeparatorStyle.DeepSeek,
sep="\n\n",
sep2="<|end▁of▁sentence|>",
stop_token_ids=[100001],
stop_str=["User:", "<|end▁of▁sentence|>"],
)
)
register_conv_template(
Conversation(
name="plain",
system_template="",
system_message="",
roles=("", ""),
messages=(),
offset=0,
sep_style=SeparatorStyle.PLAIN,
sep="",
sep2="",
stop_token_ids=[2],
stop_str=["</s>"],
)
)
register_conv_template(
Conversation(
name="alignment",
system_template="",
system_message="",
roles=("", ""),
messages=(),
offset=0,
sep_style=SeparatorStyle.ALIGNMENT,
sep="",
sep2="",
stop_token_ids=[2],
stop_str=["</s>"],
)
)
if __name__ == "__main__":
# print("Llama-2 template:")
# conv = get_conv_template("llama-2")
# conv.set_system_message("You are a helpful, respectful and honest assistant.")
# conv.append_message(conv.roles[0], "Hello!")
# conv.append_message(conv.roles[1], "Hi!")
# conv.append_message(conv.roles[0], "How are you?")
# conv.append_message(conv.roles[1], None)
# print(conv.get_prompt())
# print("\n")
print("deepseek template:")
conv = get_conv_template("deepseek")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi! This is Tony.")
conv.append_message(conv.roles[0], "Who are you?")
conv.append_message(conv.roles[1], "I am a helpful assistant.")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())