added comments and ran black for proper formatting
Browse files
utils.py
CHANGED
@@ -8,28 +8,51 @@ import random
|
|
8 |
from datetime import datetime, timedelta
|
9 |
from babel.numbers import format_currency
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
7: "Receiver's balance was exactly credited", 8: "Large amount", 9: "Frequent receiver of transactions", 10: "Receiver is merchant", 11: "Sender ID", 12: "Receiver ID",
|
29 |
-
13: "Transaction type is Cash out", 14: "Transaction type is Transfer", 15: "Transaction type is Payment", 16: "Transaction type is Cash in", 17: "Transaction type is Debit"}
|
30 |
-
|
31 |
-
CATEGORIES = np.array(['CASH_OUT', 'TRANSFER', 'PAYMENT', 'CASH_IN', 'DEBIT'])
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def transformation(input, categories):
|
34 |
new_x = input
|
35 |
cat = np.array(input[1])
|
@@ -38,21 +61,32 @@ def transformation(input, categories):
|
|
38 |
match_index = np.where(categories == cat)[0]
|
39 |
result_array[match_index] = 1
|
40 |
new_x.extend(result_array.tolist())
|
41 |
-
python_objects = [
|
|
|
|
|
|
|
42 |
return python_objects
|
43 |
|
|
|
|
|
44 |
def get_request_body(datapoint):
|
45 |
data = datapoint.iloc[0].tolist()
|
46 |
instances = [int(x) if isinstance(x, (np.int32, np.int64)) else x for x in data]
|
47 |
-
request_body = {
|
48 |
return request_body
|
49 |
|
50 |
|
|
|
51 |
def get_explainability_texts(shap_values, feature_texts):
|
52 |
# Separate positive and negative values, keep indice as corresponds to key
|
53 |
positive_dict = {index: val for index, val in enumerate(shap_values) if val > 0}
|
54 |
# Sort dictionaries based on the magnitude of values
|
55 |
-
sorted_positive_indices = [
|
|
|
|
|
|
|
|
|
|
|
56 |
positive_texts = [feature_texts[x] for x in sorted_positive_indices]
|
57 |
positive_texts = positive_texts[2:]
|
58 |
sorted_positive_indices = sorted_positive_indices[2:]
|
@@ -62,37 +96,56 @@ def get_explainability_texts(shap_values, feature_texts):
|
|
62 |
return positive_texts, sorted_positive_indices
|
63 |
|
64 |
|
|
|
|
|
65 |
def random_past_date_from_last_year():
|
66 |
one_year_ago = datetime.now() - timedelta(days=365)
|
67 |
random_days = random.randint(0, (datetime.now() - one_year_ago).days)
|
68 |
random_date = one_year_ago + timedelta(days=random_days)
|
69 |
-
return random_date.strftime(
|
|
|
70 |
|
|
|
71 |
def get_explainability_values(pos_indices, data):
|
72 |
-
rounded_data = [
|
|
|
|
|
73 |
transformed_data = transformation(input=rounded_data, categories=CATEGORIES)
|
74 |
vals = []
|
75 |
for idx in pos_indices:
|
76 |
-
if idx in range(6,11) or idx in range(13,18):
|
77 |
val = str(bool(transformed_data[idx])).capitalize()
|
78 |
else:
|
79 |
val = transformed_data[idx]
|
80 |
vals.append(val)
|
81 |
return vals
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
data = datapoint.iloc[0].tolist()
|
85 |
data[0] = random_past_date_from_last_year()
|
86 |
modified_amounts = data.copy()
|
87 |
if any(val > 12000 for val in data[2:7]):
|
88 |
-
modified_amounts[2:7] = [
|
|
|
|
|
89 |
if any(val > 120000 for val in modified_amounts[2:7]):
|
90 |
new_list = [value / 10 if value != 0 else 0 for value in modified_amounts[2:7]]
|
91 |
modified_amounts[2:7] = new_list
|
92 |
-
rounded_data = [
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
94 |
return rounded_data
|
95 |
|
|
|
|
|
96 |
def get_weights(shap_values, sorted_indices, target_sum=0.95):
|
97 |
weights = [shap_values[x] for x in sorted_indices]
|
98 |
total_sum = sum(weights)
|
@@ -100,6 +153,8 @@ def get_weights(shap_values, sorted_indices, target_sum=0.95):
|
|
100 |
scaled_values = [val * (target_sum / total_sum) for val in weights]
|
101 |
return scaled_values
|
102 |
|
|
|
|
|
103 |
def get_fake_certainty():
|
104 |
# Generate a random certainty between 75% and 99%
|
105 |
fake_certainty = uniform(0.75, 0.99)
|
@@ -107,20 +162,28 @@ def get_fake_certainty():
|
|
107 |
return formatted_fake_certainty
|
108 |
|
109 |
|
|
|
110 |
def get_random_suspicious_transaction(data):
|
111 |
-
suspicious_data=data[data["isFraud"]==1]
|
112 |
-
max_n=len(suspicious_data)
|
113 |
-
random_nr=randrange(max_n)
|
114 |
-
suspicous_transaction = suspicious_data[random_nr-1:random_nr].drop(
|
|
|
|
|
115 |
return suspicous_transaction
|
116 |
|
117 |
|
118 |
-
|
|
|
|
|
|
|
119 |
"""Send evaluation to Deeploy."""
|
120 |
try:
|
121 |
with st.spinner("Submitting response..."):
|
122 |
# Call the explain endpoint as it also includes the prediction
|
123 |
-
client.evaluate(
|
|
|
|
|
124 |
return True
|
125 |
except Exception as e:
|
126 |
logging.error(e)
|
@@ -132,6 +195,7 @@ def send_evaluation(client, deployment_id, request_log_id, prediction_log_id, ev
|
|
132 |
st.write(f"Error message: {e}")
|
133 |
|
134 |
|
|
|
135 |
def get_model_url():
|
136 |
"""Get model url and retrieve workspace id and deployment id from it"""
|
137 |
model_url = st.text_area(
|
@@ -148,37 +212,50 @@ def get_model_url():
|
|
148 |
deployment_id = ""
|
149 |
return model_url, workspace_id, deployment_id
|
150 |
|
|
|
|
|
151 |
def get_comment_explanation(certainty, explainability_texts, explainability_values):
|
152 |
-
cleaned = [x.replace(
|
153 |
-
fi = [f
|
154 |
-
fi.insert(0,
|
155 |
-
result =
|
156 |
-
comment = f"Model certainty is {certainty}" +
|
157 |
return comment
|
158 |
|
|
|
|
|
159 |
def create_data_input_table(data, col_names):
|
160 |
st.subheader("Transaction details")
|
161 |
data[7:12] = [bool(value) for value in data[7:12]]
|
162 |
-
rounded_list = [
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
|
|
|
167 |
def create_table(texts, values, weights, title):
|
168 |
-
df = pd.DataFrame(
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
182 |
htmlstr = f"""
|
183 |
<script>
|
184 |
var elements = window.parent.document.querySelectorAll('button');
|
@@ -190,4 +267,4 @@ def ChangeButtonColour(widget_label, font_color, background_color='transparent')
|
|
190 |
}}
|
191 |
</script>
|
192 |
"""
|
193 |
-
components.html(f"{htmlstr}", height=0, width=0)
|
|
|
8 |
from datetime import datetime, timedelta
|
9 |
from babel.numbers import format_currency
|
10 |
|
11 |
+
# Column names for data input
|
12 |
+
COL_NAMES = [
|
13 |
+
"Transaction date",
|
14 |
+
"Transaction type",
|
15 |
+
"Amount transferred",
|
16 |
+
"Sender's initial balance",
|
17 |
+
"Sender's new balance",
|
18 |
+
"Recipient's initial balance",
|
19 |
+
"Recipient's new balance",
|
20 |
+
"Sender exactly credited",
|
21 |
+
"Receiver exactly credited",
|
22 |
+
"Large amount",
|
23 |
+
"Frequent receiver",
|
24 |
+
"Merchant receiver",
|
25 |
+
"Sender ID",
|
26 |
+
"Receiver ID",
|
27 |
+
]
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Texts for explanation
|
30 |
+
feature_texts = {
|
31 |
+
0: "Date of transaction",
|
32 |
+
1: "Amount transferred",
|
33 |
+
2: "Initial balance of sender",
|
34 |
+
3: "New balance of sender",
|
35 |
+
4: "Initial balance of recipient",
|
36 |
+
5: "New balance of recipient",
|
37 |
+
6: "Sender's balance was exactly credited",
|
38 |
+
7: "Receiver's balance was exactly credited",
|
39 |
+
8: "Large amount",
|
40 |
+
9: "Frequent receiver of transactions",
|
41 |
+
10: "Receiver is merchant",
|
42 |
+
11: "Sender ID",
|
43 |
+
12: "Receiver ID",
|
44 |
+
13: "Transaction type is Cash out",
|
45 |
+
14: "Transaction type is Transfer",
|
46 |
+
15: "Transaction type is Payment",
|
47 |
+
16: "Transaction type is Cash in",
|
48 |
+
17: "Transaction type is Debit",
|
49 |
+
}
|
50 |
+
|
51 |
+
# categories for one hot encoding
|
52 |
+
CATEGORIES = np.array(["CASH_OUT", "TRANSFER", "PAYMENT", "CASH_IN", "DEBIT"])
|
53 |
+
|
54 |
+
|
55 |
+
# one hot encoding
|
56 |
def transformation(input, categories):
|
57 |
new_x = input
|
58 |
cat = np.array(input[1])
|
|
|
61 |
match_index = np.where(categories == cat)[0]
|
62 |
result_array[match_index] = 1
|
63 |
new_x.extend(result_array.tolist())
|
64 |
+
python_objects = [
|
65 |
+
np_type.item() if isinstance(np_type, np.generic) else np_type
|
66 |
+
for np_type in new_x
|
67 |
+
]
|
68 |
return python_objects
|
69 |
|
70 |
+
|
71 |
+
# func to make the request body in the right format for the client
|
72 |
def get_request_body(datapoint):
|
73 |
data = datapoint.iloc[0].tolist()
|
74 |
instances = [int(x) if isinstance(x, (np.int32, np.int64)) else x for x in data]
|
75 |
+
request_body = {"instances": [instances]}
|
76 |
return request_body
|
77 |
|
78 |
|
79 |
+
# func for sorting and retrieving the explanation texts
|
80 |
def get_explainability_texts(shap_values, feature_texts):
|
81 |
# Separate positive and negative values, keep indice as corresponds to key
|
82 |
positive_dict = {index: val for index, val in enumerate(shap_values) if val > 0}
|
83 |
# Sort dictionaries based on the magnitude of values
|
84 |
+
sorted_positive_indices = [
|
85 |
+
index
|
86 |
+
for index, _ in sorted(
|
87 |
+
positive_dict.items(), key=lambda item: abs(item[1]), reverse=True
|
88 |
+
)
|
89 |
+
]
|
90 |
positive_texts = [feature_texts[x] for x in sorted_positive_indices]
|
91 |
positive_texts = positive_texts[2:]
|
92 |
sorted_positive_indices = sorted_positive_indices[2:]
|
|
|
96 |
return positive_texts, sorted_positive_indices
|
97 |
|
98 |
|
99 |
+
# func to generate random date from the past year to replace var "steps" with
|
100 |
+
# in the input data, to make it more understandable
|
101 |
def random_past_date_from_last_year():
|
102 |
one_year_ago = datetime.now() - timedelta(days=365)
|
103 |
random_days = random.randint(0, (datetime.now() - one_year_ago).days)
|
104 |
random_date = one_year_ago + timedelta(days=random_days)
|
105 |
+
return random_date.strftime("%Y-%m-%d")
|
106 |
+
|
107 |
|
108 |
+
# func for retrieving the values for explanations, requires some data engineering
|
109 |
def get_explainability_values(pos_indices, data):
|
110 |
+
rounded_data = [
|
111 |
+
round(value, 2) if isinstance(value, float) else value for value in data
|
112 |
+
]
|
113 |
transformed_data = transformation(input=rounded_data, categories=CATEGORIES)
|
114 |
vals = []
|
115 |
for idx in pos_indices:
|
116 |
+
if idx in range(6, 11) or idx in range(13, 18):
|
117 |
val = str(bool(transformed_data[idx])).capitalize()
|
118 |
else:
|
119 |
val = transformed_data[idx]
|
120 |
vals.append(val)
|
121 |
return vals
|
122 |
|
123 |
+
|
124 |
+
# func to modify the values of currency to make it more similar to euro
|
125 |
+
def modify_datapoint(
|
126 |
+
datapoint,
|
127 |
+
): # should return list, with correct numbers/amounts, and date
|
128 |
data = datapoint.iloc[0].tolist()
|
129 |
data[0] = random_past_date_from_last_year()
|
130 |
modified_amounts = data.copy()
|
131 |
if any(val > 12000 for val in data[2:7]):
|
132 |
+
modified_amounts[2:7] = [
|
133 |
+
value / 100 if value != 0 else 0 for value in data[2:7]
|
134 |
+
]
|
135 |
if any(val > 120000 for val in modified_amounts[2:7]):
|
136 |
new_list = [value / 10 if value != 0 else 0 for value in modified_amounts[2:7]]
|
137 |
modified_amounts[2:7] = new_list
|
138 |
+
rounded_data = [
|
139 |
+
round(value, 2) if isinstance(value, float) else value
|
140 |
+
for value in modified_amounts
|
141 |
+
]
|
142 |
+
rounded_data[2:7] = [
|
143 |
+
format_currency(value, "EUR", locale="en_GB") for value in rounded_data[2:7]
|
144 |
+
]
|
145 |
return rounded_data
|
146 |
|
147 |
+
|
148 |
+
# func to retireve the weights of the features to be presented as explanation
|
149 |
def get_weights(shap_values, sorted_indices, target_sum=0.95):
|
150 |
weights = [shap_values[x] for x in sorted_indices]
|
151 |
total_sum = sum(weights)
|
|
|
153 |
scaled_values = [val * (target_sum / total_sum) for val in weights]
|
154 |
return scaled_values
|
155 |
|
156 |
+
|
157 |
+
# func to generate a fake certainty for the model to make it more realistic
|
158 |
def get_fake_certainty():
|
159 |
# Generate a random certainty between 75% and 99%
|
160 |
fake_certainty = uniform(0.75, 0.99)
|
|
|
162 |
return formatted_fake_certainty
|
163 |
|
164 |
|
165 |
+
# func to get a datapoint marked as fraud in the dataset to be passed to the model
|
166 |
def get_random_suspicious_transaction(data):
|
167 |
+
suspicious_data = data[data["isFraud"] == 1]
|
168 |
+
max_n = len(suspicious_data)
|
169 |
+
random_nr = randrange(max_n)
|
170 |
+
suspicous_transaction = suspicious_data[random_nr - 1 : random_nr].drop(
|
171 |
+
"isFraud", axis=1
|
172 |
+
)
|
173 |
return suspicous_transaction
|
174 |
|
175 |
|
176 |
+
# func to send the evaluation to Deeploy
|
177 |
+
def send_evaluation(
|
178 |
+
client, deployment_id, request_log_id, prediction_log_id, evaluation_input
|
179 |
+
):
|
180 |
"""Send evaluation to Deeploy."""
|
181 |
try:
|
182 |
with st.spinner("Submitting response..."):
|
183 |
# Call the explain endpoint as it also includes the prediction
|
184 |
+
client.evaluate(
|
185 |
+
deployment_id, request_log_id, prediction_log_id, evaluation_input
|
186 |
+
)
|
187 |
return True
|
188 |
except Exception as e:
|
189 |
logging.error(e)
|
|
|
195 |
st.write(f"Error message: {e}")
|
196 |
|
197 |
|
198 |
+
# func to retrieve model url and important vars for Deeploy client
|
199 |
def get_model_url():
|
200 |
"""Get model url and retrieve workspace id and deployment id from it"""
|
201 |
model_url = st.text_area(
|
|
|
212 |
deployment_id = ""
|
213 |
return model_url, workspace_id, deployment_id
|
214 |
|
215 |
+
|
216 |
+
# func to create the prefilled text for the disagree button
|
217 |
def get_comment_explanation(certainty, explainability_texts, explainability_values):
|
218 |
+
cleaned = [x.replace(":", "") for x in explainability_texts]
|
219 |
+
fi = [f"{cleaned[i]} is {x}" for i, x in enumerate(explainability_values)]
|
220 |
+
fi.insert(0, "Important suspicious features: ")
|
221 |
+
result = "\n".join(fi)
|
222 |
+
comment = f"Model certainty is {certainty}" + "\n" "\n" + result
|
223 |
return comment
|
224 |
|
225 |
+
|
226 |
+
# func to create the data input table
|
227 |
def create_data_input_table(data, col_names):
|
228 |
st.subheader("Transaction details")
|
229 |
data[7:12] = [bool(value) for value in data[7:12]]
|
230 |
+
rounded_list = [
|
231 |
+
round(value, 2) if isinstance(value, float) else value for value in data
|
232 |
+
]
|
233 |
+
df = pd.DataFrame({"Feature name": col_names, "Value": rounded_list})
|
234 |
+
st.dataframe(
|
235 |
+
df, hide_index=True, width=475, height=35 * len(df) + 38
|
236 |
+
) # use_container_width=True
|
237 |
|
238 |
+
|
239 |
+
# func to create the explanation table
|
240 |
def create_table(texts, values, weights, title):
|
241 |
+
df = pd.DataFrame(
|
242 |
+
{"Feature Explanation": texts, "Value": values, "Weight": weights}
|
243 |
+
)
|
244 |
+
st.markdown(f"#### {title}") # Markdown for styling
|
245 |
+
st.dataframe(
|
246 |
+
df,
|
247 |
+
hide_index=True,
|
248 |
+
width=475,
|
249 |
+
column_config={
|
250 |
+
"Weight": st.column_config.ProgressColumn(
|
251 |
+
"Weight", width="small", format="%.2f", min_value=0, max_value=1
|
252 |
+
)
|
253 |
+
},
|
254 |
+
) # use_container_width=True
|
255 |
+
|
256 |
+
|
257 |
+
# func to change button colors
|
258 |
+
def ChangeButtonColour(widget_label, font_color, background_color="transparent"):
|
259 |
htmlstr = f"""
|
260 |
<script>
|
261 |
var elements = window.parent.document.querySelectorAll('button');
|
|
|
267 |
}}
|
268 |
</script>
|
269 |
"""
|
270 |
+
components.html(f"{htmlstr}", height=0, width=0)
|