deepguess's picture
init
1254cf1
import gradio as gr
import spaces
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
import os
from datetime import datetime
from PIL import Image
import requests
from io import BytesIO
# Model setup
processor = AutoProcessor.from_pretrained("deepguess/weather-vlm-qwen2.5-7b", trust_remote_code=True)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"deepguess/weather-vlm-qwen2.5-7b",
torch_dtype=torch.float16,
trust_remote_code=True
)
model.eval()
# Title and description
TITLE = "🌦️ Weather Analysis VLM (Qwen2.5-VL-7B Fine-tuned)"
DESCRIPTION = """
## Advanced Weather Image Analysis
This model specializes in analyzing weather data including:
- **Model Outputs**: GFS, HRRR, ECMWF, NAM analysis
- **Soundings**: Skew-T diagrams, hodographs, SHARPpy analysis
- **Observations**: Surface obs, satellite, radar imagery
- **Forecasts**: Deterministic and ensemble model outputs
- **Severe Weather**: Convective parameters, SPC outlooks
### ⚠️ Disclaimer
**For educational and research purposes only. Not for operational forecasting.**
"""
# Enhanced prompts based on your data categories
PROMPT_TEMPLATES = {
"Quick Analysis": "Describe the weather in this image.",
"Model Output": "Analyze this model output. What patterns and features are shown?",
"Sounding Analysis": "Analyze this sounding. Discuss stability, shear, and severe potential.",
"Radar/Satellite": "Describe the features in this radar or satellite image.",
"Severe Weather": "Assess severe weather potential based on this image.",
"Technical Deep Dive": "Provide detailed technical analysis including parameters and meteorological significance.",
"Forecast Discussion": "Based on this image, what weather evolution is expected?",
"Pattern Recognition": "Identify synoptic patterns, jet streaks, troughs, ridges, and fronts.",
"Ensemble Analysis": "Analyze ensemble spread, uncertainty, and most likely scenarios.",
"Winter Weather": "Analyze precipitation type, accumulation potential, and impacts.",
}
# System prompts for different analysis modes
SYSTEM_PROMPTS = {
"technical": """You are an expert meteorologist providing technical analysis. Focus on:
- Specific parameter values and thresholds
- Physical processes and dynamics
- Pattern recognition and anomalies
- Forecast confidence and uncertainty
Use technical terminology appropriately.""",
"educational": """You are a meteorology instructor. Explain concepts clearly while maintaining accuracy.
Point out key features and explain their significance. Use some technical terms but define them.""",
"operational": """You are providing a weather briefing. Focus on:
- Current conditions and trends
- Expected evolution
- Impacts and hazards
- Timing of changes
Be concise but thorough.""",
"research": """You are analyzing meteorological data for research purposes. Discuss:
- Interesting features or anomalies
- Comparison to climatology
- Physical mechanisms
- Uncertainty quantification"""
}
# Analysis mode descriptions
MODE_INFO = {
"technical": "Detailed technical analysis for meteorologists",
"educational": "Clear explanations for learning",
"operational": "Focused briefing style",
"research": "In-depth research perspective"
}
# Example URLs for different weather data types
EXAMPLE_URLS = {
"SPC Convective Outlook": "https://www.spc.noaa.gov/products/outlook/day1otlk.gif",
"SPC Mesoanalysis (Surface)": "https://inside.nssl.noaa.gov/ewp/wp-content/uploads/sites/22/2019/05/19ZSPCCape.png",
"College of DuPage Nexrad": "https://upload.wikimedia.org/wikipedia/commons/9/9b/NEXRAD_radar_of_an_EF2_tornado_in_Kansas_on_March_13%2C_2024.png",
"Tropical Tidbits GFS 500mb": "https://sites.gatech.edu/eas-mesoscale-blog/files/2023/04/Hebert_Fig4-768x531.png",
"GOES-16 Visible": "https://cdn.star.nesdis.noaa.gov/GOES16/ABI/CONUS/GEOCOLOR/1250x750.jpg",
"KOUN Sounding": "https://sharppy.github.io/SHARPpy/_images/gui.sharppy.png",
}
def load_image_from_url(url):
"""Load an image from URL."""
try:
response = requests.get(url, timeout=10, headers={'User-Agent': 'Mozilla/5.0'})
response.raise_for_status()
img = Image.open(BytesIO(response.content))
# Convert to RGB if necessary
if img.mode != 'RGB':
img = img.convert('RGB')
return img
except Exception as e:
return None, f"Error loading image from URL: {str(e)}"
@spaces.GPU(duration=90)
def analyze_weather_image(image, image_url, analysis_type, custom_prompt, analysis_mode, temperature, max_tokens, top_p):
# Handle image input - either direct upload or URL
if image_url and image_url.strip():
result = load_image_from_url(image_url.strip())
if isinstance(result, tuple): # Error case
return result[1]
image = result
elif image is None:
return "Please upload an image or provide an image URL to analyze."
# Move model to GPU
model.cuda()
# Use custom prompt if provided, otherwise use template
prompt = custom_prompt.strip() if custom_prompt.strip() else PROMPT_TEMPLATES.get(analysis_type, PROMPT_TEMPLATES["Quick Analysis"])
# Select system prompt based on mode
system_content = SYSTEM_PROMPTS.get(analysis_mode, SYSTEM_PROMPTS["technical"])
# Prepare messages
messages = [{
"role": "system",
"content": system_content
}, {
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": image}
]
}]
# Process inputs
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[text], images=[image], return_tensors="pt").to("cuda")
# Generate with specified parameters
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
top_p=top_p,
repetition_penalty=1.05
)
# Decode response
response = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)[0]
# Add metadata
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S UTC")
source = "URL" if image_url and image_url.strip() else "Upload"
metadata = f"\n\n---\n*Analysis completed: {timestamp} | Mode: {analysis_mode} | Type: {analysis_type} | Source: {source}*"
return response + metadata
# Create Gradio interface
with gr.Blocks(title=TITLE, theme=gr.themes.Base(), css="""
.gradio-container { font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace; }
.markdown-text { font-size: 14px; }
#analysis-output { font-family: 'Monaco', 'Menlo', monospace; font-size: 13px; }
.gr-button-primary { background-color: #2563eb; }
.gr-button-primary:hover { background-color: #1e40af; }
.url-button { min-width: 120px; }
""") as demo:
gr.Markdown(f"# {TITLE}")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column(scale=1):
# Image input options
with gr.Tabs():
with gr.Tab("Upload Image"):
image_input = gr.Image(
label="Upload Weather Image",
type="pil",
elem_id="image-upload"
)
with gr.Tab("Image URL"):
image_url_input = gr.Textbox(
label="Image URL",
placeholder="https://example.com/weather-image.jpg",
lines=1
)
# Quick URL examples
gr.Markdown("**Quick Examples:**")
url_buttons = []
for name, url in EXAMPLE_URLS.items():
btn = gr.Button(name, size="sm", elem_classes="url-button")
btn.click(lambda u=url: u, outputs=image_url_input)
# Analysis type selector
analysis_type = gr.Dropdown(
label="Analysis Type",
choices=list(PROMPT_TEMPLATES.keys()),
value="Quick Analysis",
info="Select the type of analysis you need"
)
# Analysis mode selector
analysis_mode = gr.Radio(
label="Analysis Mode",
choices=list(MODE_INFO.keys()),
value="technical",
info="Choose the style and depth of analysis"
)
# Mode description
mode_description = gr.Markdown(value=MODE_INFO["technical"], elem_id="mode-desc")
# Custom prompt option
with gr.Accordion("Custom Prompt (Optional)", open=False):
custom_prompt = gr.Textbox(
label="Enter your specific question or analysis request",
placeholder="E.g., 'Focus on the 500mb vorticity patterns' or 'Explain the hodograph curvature'",
lines=3
)
# Advanced settings
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.05,
label="Temperature",
info="Lower = more focused, Higher = more varied"
)
top_p = gr.Slider(
minimum=0.5,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold"
)
max_tokens = gr.Slider(
minimum=128,
maximum=1024,
value=512,
step=64,
label="Max Output Length",
info="Longer for detailed analysis"
)
# Analyze button
analyze_btn = gr.Button("🔍 Analyze Weather", variant="primary", size="lg")
with gr.Column(scale=1):
# Output area
output = gr.Textbox(
label="Analysis Results",
lines=25,
max_lines=30,
show_copy_button=True,
elem_id="analysis-output"
)
# Common weather data categories for quick access
with gr.Accordion("📊 Quick Templates for Common Data Types", open=False):
gr.Markdown("""
### Click to load analysis templates:
""")
with gr.Row():
gr.Button("500mb Analysis", size="sm").click(
lambda: "Analyze the 500mb height and wind patterns. Identify troughs, ridges, jet streaks, and vorticity.",
outputs=custom_prompt
)
gr.Button("Sounding Analysis", size="sm").click(
lambda: "Analyze this sounding for stability, CAPE, shear, LCL, LFC, and severe weather parameters.",
outputs=custom_prompt
)
gr.Button("Composite Reflectivity", size="sm").click(
lambda: "Analyze radar reflectivity patterns, storm structure, intensity, and movement.",
outputs=custom_prompt
)
with gr.Row():
gr.Button("Surface Analysis", size="sm").click(
lambda: "Analyze surface features including fronts, pressure centers, convergence, and boundaries.",
outputs=custom_prompt
)
gr.Button("Ensemble Spread", size="sm").click(
lambda: "Analyze ensemble spread, clustering, and probabilistic information.",
outputs=custom_prompt
)
gr.Button("Convective Parameters", size="sm").click(
lambda: "Analyze CAPE, CIN, SRH, bulk shear, and composite parameters for severe potential.",
outputs=custom_prompt
)
# Tips section
with gr.Accordion("💡 Pro Tips for Best Results", open=False):
gr.Markdown("""
### Image Guidelines:
- **Resolution**: Higher resolution images yield better analysis
- **Clarity**: Ensure text/contours are legible
- **Completeness**: Include colorbars, titles, valid times
### Using URLs:
- Supports direct links to JPG, PNG, GIF images
- Some weather sites may block direct access
- For best results, use official weather service URLs
- Alternative: Save image locally and upload
### Common Weather Data Sources:
- **SPC**: Convective outlooks, mesoanalysis
- **College of DuPage**: NEXRAD, model data
- **Tropical Tidbits**: Model analysis maps
- **GOES Imagery**: Satellite data
- **WPC**: Surface analysis, QPF
### Analysis Tips by Data Type:
**Model Output (GFS, HRRR, ECMWF, NAM):**
- Include initialization and valid times
- Specify if you want focus on particular features
- Ask about ensemble uncertainty if applicable
**Soundings (Skew-T, Hodographs):**
- Ensure all parameters are visible
- Ask about specific levels or layers
- Request shear calculations or thermodynamic analysis
**Radar/Satellite:**
- Include timestamp and location
- Specify interest in particular features
- Ask about storm motion or development
""")
# Update mode description when mode changes
analysis_mode.change(
lambda mode: MODE_INFO[mode],
inputs=analysis_mode,
outputs=mode_description
)
# Set up event handler
analyze_btn.click(
fn=analyze_weather_image,
inputs=[image_input, image_url_input, analysis_type, custom_prompt, analysis_mode, temperature, max_tokens, top_p],
outputs=output
)
# Clear image upload when URL is entered
image_url_input.change(
lambda: None,
outputs=image_input
)
# Launch the app
if __name__ == "__main__":
demo.launch()