Spaces:
Running
Running
dev(narugo): upgrade this space
Browse files- README.md +8 -0
- app.py +32 -201
- app2.py +0 -34
- censor.py +0 -47
- detection/halfbody.py +33 -0
- eye.py +0 -50
- face.py +0 -52
- halfbody.py +0 -44
- hand.py +0 -49
- head.py +0 -43
- manbits.py +0 -45
- onnx_.py +0 -59
- person.py +0 -46
- plot.py +0 -76
- yolo_.py +0 -110
README.md
CHANGED
@@ -8,6 +8,14 @@ sdk_version: 4.44.0
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
models:
|
12 |
+
- deepghs/anime_face_detection
|
13 |
+
- deepghs/anime_censor_detection
|
14 |
+
- deepghs/anime_eye_detection
|
15 |
+
- deepghs/anime_halfbody_detection
|
16 |
+
- deepghs/anime_hand_detection
|
17 |
+
- deepghs/anime_head_detection
|
18 |
+
- deepghs/anime_person_detection
|
19 |
---
|
20 |
|
21 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -2,208 +2,39 @@ import os
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
-
from
|
6 |
-
|
7 |
-
from face import _FACE_MODELS, _DEFAULT_FACE_MODEL, _gr_detect_faces
|
8 |
-
from halfbody import _HALFBODY_MODELS, _DEFAULT_HALFBODY_MODEL, _gr_detect_halfbodies
|
9 |
-
from hand import _gr_detect_hands, _HAND_MODELS, _DEFAULT_HAND_MODEL
|
10 |
-
from head import _gr_detect_heads, _HEAD_MODELS, _DEFAULT_HEAD_MODEL
|
11 |
-
from manbits import _MANBIT_MODELS, _DEFAULT_MANBIT_MODEL, _gr_detect_manbits
|
12 |
-
from person import _PERSON_MODELS, _DEFAULT_PERSON_MODEL, _gr_detect_person
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
with gr.Column():
|
20 |
-
gr_face_input_image = gr.Image(type='pil', label='Original Image')
|
21 |
-
gr_face_model = gr.Dropdown(_FACE_MODELS, value=_DEFAULT_FACE_MODEL, label='Model')
|
22 |
-
gr_face_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
|
23 |
-
with gr.Row():
|
24 |
-
gr_face_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
|
25 |
-
gr_face_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')
|
26 |
-
|
27 |
-
gr_face_submit = gr.Button(value='Submit', variant='primary')
|
28 |
-
|
29 |
-
with gr.Column():
|
30 |
-
gr_face_output_image = gr.Image(type='pil', label="Labeled")
|
31 |
-
|
32 |
-
gr_face_submit.click(
|
33 |
-
_gr_detect_faces,
|
34 |
-
inputs=[
|
35 |
-
gr_face_input_image, gr_face_model,
|
36 |
-
gr_face_infer_size, gr_face_score_threshold, gr_face_iou_threshold,
|
37 |
-
],
|
38 |
-
outputs=[gr_face_output_image],
|
39 |
-
)
|
40 |
-
|
41 |
-
with gr.Tab('Head Detection'):
|
42 |
-
with gr.Row():
|
43 |
-
with gr.Column():
|
44 |
-
gr_head_input_image = gr.Image(type='pil', label='Original Image')
|
45 |
-
gr_head_model = gr.Dropdown(_HEAD_MODELS, value=_DEFAULT_HEAD_MODEL, label='Model')
|
46 |
-
gr_head_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
|
47 |
-
with gr.Row():
|
48 |
-
gr_head_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
|
49 |
-
gr_head_score_threshold = gr.Slider(0.0, 1.0, 0.3, label='Score Threshold')
|
50 |
-
|
51 |
-
gr_head_submit = gr.Button(value='Submit', variant='primary')
|
52 |
-
|
53 |
-
with gr.Column():
|
54 |
-
gr_head_output_image = gr.Image(type='pil', label="Labeled")
|
55 |
-
|
56 |
-
gr_head_submit.click(
|
57 |
-
_gr_detect_heads,
|
58 |
-
inputs=[
|
59 |
-
gr_head_input_image, gr_head_model,
|
60 |
-
gr_head_infer_size, gr_head_score_threshold, gr_head_iou_threshold,
|
61 |
-
],
|
62 |
-
outputs=[gr_head_output_image],
|
63 |
-
)
|
64 |
-
|
65 |
-
with gr.Tab('Person Detection'):
|
66 |
-
with gr.Row():
|
67 |
-
with gr.Column():
|
68 |
-
gr_person_input_image = gr.Image(type='pil', label='Original Image')
|
69 |
-
gr_person_model = gr.Dropdown(_PERSON_MODELS, value=_DEFAULT_PERSON_MODEL, label='Model')
|
70 |
-
gr_person_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
|
71 |
-
with gr.Row():
|
72 |
-
gr_person_iou_threshold = gr.Slider(0.0, 1.0, 0.5, label='IOU Threshold')
|
73 |
-
gr_person_score_threshold = gr.Slider(0.0, 1.0, 0.3, label='Score Threshold')
|
74 |
-
|
75 |
-
gr_person_submit = gr.Button(value='Submit', variant='primary')
|
76 |
-
|
77 |
-
with gr.Column():
|
78 |
-
gr_person_output_image = gr.Image(type='pil', label="Labeled")
|
79 |
-
|
80 |
-
gr_person_submit.click(
|
81 |
-
_gr_detect_person,
|
82 |
-
inputs=[
|
83 |
-
gr_person_input_image, gr_person_model,
|
84 |
-
gr_person_infer_size, gr_person_score_threshold, gr_person_iou_threshold,
|
85 |
-
],
|
86 |
-
outputs=[gr_person_output_image],
|
87 |
-
)
|
88 |
-
|
89 |
-
with gr.Tab('Half Body Detection'):
|
90 |
-
with gr.Row():
|
91 |
-
with gr.Column():
|
92 |
-
gr_halfbody_input_image = gr.Image(type='pil', label='Original Image')
|
93 |
-
gr_halfbody_model = gr.Dropdown(_HALFBODY_MODELS, value=_DEFAULT_HALFBODY_MODEL, label='Model')
|
94 |
-
gr_halfbody_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
|
95 |
-
with gr.Row():
|
96 |
-
gr_halfbody_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
|
97 |
-
gr_halfbody_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')
|
98 |
-
|
99 |
-
gr_halfbody_submit = gr.Button(value='Submit', variant='primary')
|
100 |
-
|
101 |
-
with gr.Column():
|
102 |
-
gr_halfbody_output_image = gr.Image(type='pil', label="Labeled")
|
103 |
-
|
104 |
-
gr_halfbody_submit.click(
|
105 |
-
_gr_detect_halfbodies,
|
106 |
-
inputs=[
|
107 |
-
gr_halfbody_input_image, gr_halfbody_model,
|
108 |
-
gr_halfbody_infer_size, gr_halfbody_score_threshold, gr_halfbody_iou_threshold,
|
109 |
-
],
|
110 |
-
outputs=[gr_halfbody_output_image],
|
111 |
-
)
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
)
|
136 |
-
|
137 |
-
|
138 |
-
with gr.Row():
|
139 |
-
with gr.Column():
|
140 |
-
gr_hand_input_image = gr.Image(type='pil', label='Original Image')
|
141 |
-
gr_hand_model = gr.Dropdown(_HAND_MODELS, value=_DEFAULT_HAND_MODEL, label='Model')
|
142 |
-
gr_hand_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
|
143 |
-
with gr.Row():
|
144 |
-
gr_hand_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
|
145 |
-
gr_hand_score_threshold = gr.Slider(0.0, 1.0, 0.35, label='Score Threshold')
|
146 |
-
|
147 |
-
gr_hand_submit = gr.Button(value='Submit', variant='primary')
|
148 |
-
|
149 |
-
with gr.Column():
|
150 |
-
gr_hand_output_image = gr.Image(type='pil', label="Labeled")
|
151 |
-
|
152 |
-
gr_hand_submit.click(
|
153 |
-
_gr_detect_hands,
|
154 |
-
inputs=[
|
155 |
-
gr_hand_input_image, gr_hand_model,
|
156 |
-
gr_hand_infer_size, gr_hand_score_threshold, gr_hand_iou_threshold,
|
157 |
-
],
|
158 |
-
outputs=[gr_hand_output_image],
|
159 |
-
)
|
160 |
-
|
161 |
-
with gr.Tab('Censor Point Detection'):
|
162 |
-
with gr.Row():
|
163 |
-
with gr.Column():
|
164 |
-
gr_censor_input_image = gr.Image(type='pil', label='Original Image')
|
165 |
-
gr_censor_model = gr.Dropdown(_CENSOR_MODELS, value=_DEFAULT_CENSOR_MODEL, label='Model')
|
166 |
-
gr_censor_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
|
167 |
-
with gr.Row():
|
168 |
-
gr_censor_iou_threshold = gr.Slider(0.0, 1.0, 0.5, label='IOU Threshold')
|
169 |
-
gr_censor_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')
|
170 |
-
|
171 |
-
gr_censor_submit = gr.Button(value='Submit', variant='primary')
|
172 |
-
|
173 |
-
with gr.Column():
|
174 |
-
gr_censor_output_image = gr.Image(type='pil', label="Labeled")
|
175 |
-
|
176 |
-
gr_censor_submit.click(
|
177 |
-
_gr_detect_censors,
|
178 |
-
inputs=[
|
179 |
-
gr_censor_input_image, gr_censor_model,
|
180 |
-
gr_censor_infer_size, gr_censor_score_threshold, gr_censor_iou_threshold,
|
181 |
-
],
|
182 |
-
outputs=[gr_censor_output_image],
|
183 |
-
)
|
184 |
-
|
185 |
-
with gr.Tab('Manbits Detection\n(Deprecated)'):
|
186 |
-
with gr.Row():
|
187 |
-
with gr.Column():
|
188 |
-
gr_manbit_input_image = gr.Image(type='pil', label='Original Image')
|
189 |
-
gr_manbit_model = gr.Dropdown(_MANBIT_MODELS, value=_DEFAULT_MANBIT_MODEL, label='Model')
|
190 |
-
gr_manbit_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
|
191 |
-
with gr.Row():
|
192 |
-
gr_manbit_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
|
193 |
-
gr_manbit_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')
|
194 |
-
|
195 |
-
gr_manbit_submit = gr.Button(value='Submit', variant='primary')
|
196 |
-
|
197 |
-
with gr.Column():
|
198 |
-
gr_manbit_output_image = gr.Image(type='pil', label="Labeled")
|
199 |
-
|
200 |
-
gr_manbit_submit.click(
|
201 |
-
_gr_detect_manbits,
|
202 |
-
inputs=[
|
203 |
-
gr_manbit_input_image, gr_manbit_model,
|
204 |
-
gr_manbit_infer_size, gr_manbit_score_threshold, gr_manbit_iou_threshold,
|
205 |
-
],
|
206 |
-
outputs=[gr_manbit_output_image],
|
207 |
-
)
|
208 |
|
209 |
demo.queue(os.cpu_count()).launch()
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
+
from detection import EyesDetection, FaceDetection, HeadDetection, PersonDetection, HandDetection, CensorDetection, \
|
6 |
+
HalfBodyDetection
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
_GLOBAL_CSS = """
|
9 |
+
.limit-height {
|
10 |
+
max-height: 55vh;
|
11 |
+
}
|
12 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
if __name__ == '__main__':
|
15 |
+
with gr.Blocks(css=_GLOBAL_CSS) as demo:
|
16 |
+
with gr.Row():
|
17 |
+
with gr.Column():
|
18 |
+
gr.HTML('<h2 style="text-align: center;">Object Detections For Anime</h2>')
|
19 |
+
gr.Markdown('This is the online demo for detection functions of '
|
20 |
+
'[imgutils.detect](https://dghs-imgutils.deepghs.org/main/api_doc/detect/index.html). '
|
21 |
+
'You can try them yourselves with `pip install dghs-imgutils`.')
|
22 |
+
|
23 |
+
with gr.Row():
|
24 |
+
with gr.Tabs():
|
25 |
+
with gr.Tab('Face Detection'):
|
26 |
+
FaceDetection().make_ui()
|
27 |
+
with gr.Tab('Head Detection'):
|
28 |
+
HeadDetection().make_ui()
|
29 |
+
with gr.Tab('Person Detection'):
|
30 |
+
PersonDetection().make_ui()
|
31 |
+
with gr.Tab('Half Body Detection'):
|
32 |
+
HalfBodyDetection().make_ui()
|
33 |
+
with gr.Tab('Eyes Detection'):
|
34 |
+
EyesDetection().make_ui()
|
35 |
+
with gr.Tab('Hand Detection'):
|
36 |
+
HandDetection().make_ui()
|
37 |
+
with gr.Tab('Censor Point Detection'):
|
38 |
+
CensorDetection().make_ui()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
demo.queue(os.cpu_count()).launch()
|
app2.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
|
5 |
-
from detection import EyesDetection, FaceDetection, HeadDetection, PersonDetection, HandDetection, CensorDetection, \
|
6 |
-
HalfBodyDetection
|
7 |
-
|
8 |
-
_GLOBAL_CSS = """
|
9 |
-
.limit-height {
|
10 |
-
max-height: 55vh;
|
11 |
-
}
|
12 |
-
"""
|
13 |
-
|
14 |
-
if __name__ == '__main__':
|
15 |
-
with gr.Blocks(css=_GLOBAL_CSS) as demo:
|
16 |
-
with gr.Tabs():
|
17 |
-
with gr.Tab('Face Detection'):
|
18 |
-
FaceDetection().make_ui()
|
19 |
-
with gr.Tab('Head Detection'):
|
20 |
-
HeadDetection().make_ui()
|
21 |
-
with gr.Tab('Person Detection'):
|
22 |
-
PersonDetection().make_ui()
|
23 |
-
with gr.Tab('Half Body Detection'):
|
24 |
-
HalfBodyDetection().make_ui()
|
25 |
-
with gr.Tab('Eyes Detection'):
|
26 |
-
EyesDetection().make_ui()
|
27 |
-
with gr.Tab('Hand Detection'):
|
28 |
-
HandDetection().make_ui()
|
29 |
-
with gr.Tab('Censor Point Detection'):
|
30 |
-
CensorDetection().make_ui()
|
31 |
-
with gr.Tab('Manbits Detection\n(Deprecated)'):
|
32 |
-
pass
|
33 |
-
|
34 |
-
demo.queue(os.cpu_count()).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
censor.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
from functools import lru_cache
|
2 |
-
from typing import List, Tuple
|
3 |
-
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
-
from imgutils.data import ImageTyping, load_image, rgb_encode
|
6 |
-
|
7 |
-
from onnx_ import _open_onnx_model
|
8 |
-
from plot import detection_visualize
|
9 |
-
from yolo_ import _image_preprocess, _data_postprocess
|
10 |
-
|
11 |
-
_CENSOR_MODELS = [
|
12 |
-
'censor_detect_v1.0_s',
|
13 |
-
'censor_detect_v1.0_n',
|
14 |
-
'censor_detect_v0.10_s',
|
15 |
-
'censor_detect_v0.9_s',
|
16 |
-
'censor_detect_v0.8_s',
|
17 |
-
'censor_detect_v0.7_s',
|
18 |
-
]
|
19 |
-
_DEFAULT_CENSOR_MODEL = _CENSOR_MODELS[0]
|
20 |
-
|
21 |
-
|
22 |
-
@lru_cache()
|
23 |
-
def _open_censor_detect_model(model_name):
|
24 |
-
return _open_onnx_model(hf_hub_download(
|
25 |
-
f'deepghs/anime_censor_detection',
|
26 |
-
f'{model_name}/model.onnx'
|
27 |
-
))
|
28 |
-
|
29 |
-
|
30 |
-
_LABELS = ['nipple_f', 'penis', 'pussy']
|
31 |
-
|
32 |
-
|
33 |
-
def detect_censors(image: ImageTyping, model_name: str, max_infer_size=640,
|
34 |
-
conf_threshold: float = 0.25, iou_threshold: float = 0.5) \
|
35 |
-
-> List[Tuple[Tuple[int, int, int, int], str, float]]:
|
36 |
-
image = load_image(image, mode='RGB')
|
37 |
-
new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
|
38 |
-
|
39 |
-
data = rgb_encode(new_image)[None, ...]
|
40 |
-
output, = _open_censor_detect_model(model_name).run(['output0'], {'images': data})
|
41 |
-
return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
|
42 |
-
|
43 |
-
|
44 |
-
def _gr_detect_censors(image: ImageTyping, model_name: str, max_infer_size=640,
|
45 |
-
conf_threshold: float = 0.25, iou_threshold: float = 0.5):
|
46 |
-
ret = detect_censors(image, model_name, max_infer_size, conf_threshold, iou_threshold)
|
47 |
-
return detection_visualize(image, ret, _LABELS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
detection/halfbody.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import List, Tuple
|
3 |
+
|
4 |
+
from imgutils.data import ImageTyping
|
5 |
+
from imgutils.detect.halfbody import detect_halfbody, _LABELS
|
6 |
+
|
7 |
+
from .base import DeepGHSObjectDetection
|
8 |
+
|
9 |
+
|
10 |
+
def _parse_model_name(model_name: str):
|
11 |
+
matching = re.fullmatch(r'^halfbody_detect_(?P<version>[\s\S]+?)_(?P<level>[\s\S]+?)$', model_name)
|
12 |
+
return matching.group('version'), matching.group('level')
|
13 |
+
|
14 |
+
|
15 |
+
class HalfBodyDetection(DeepGHSObjectDetection):
|
16 |
+
def __init__(self):
|
17 |
+
DeepGHSObjectDetection.__init__(self, repo_id='deepghs/anime_halfbody_detection')
|
18 |
+
|
19 |
+
def _get_default_model(self) -> str:
|
20 |
+
return 'halfbody_detect_v1.0_s'
|
21 |
+
|
22 |
+
def _get_default_iou_and_score(self, model_name: str) -> Tuple[float, float]:
|
23 |
+
return 0.7, 0.5
|
24 |
+
|
25 |
+
def _get_labels(self, model_name: str) -> List[str]:
|
26 |
+
return _LABELS
|
27 |
+
|
28 |
+
def detect(self, image: ImageTyping, model_name: str,
|
29 |
+
iou_threshold: float = 0.7, score_threshold: float = 0.25) \
|
30 |
+
-> List[Tuple[Tuple[float, float, float, float], str, float]]:
|
31 |
+
version, level = _parse_model_name(model_name)
|
32 |
+
return detect_halfbody(image, level=level, version=version,
|
33 |
+
conf_threshold=score_threshold, iou_threshold=iou_threshold)
|
eye.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
from functools import lru_cache
|
2 |
-
from typing import List, Tuple
|
3 |
-
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
-
from imgutils.data import ImageTyping, load_image, rgb_encode
|
6 |
-
|
7 |
-
from onnx_ import _open_onnx_model
|
8 |
-
from plot import detection_visualize
|
9 |
-
from yolo_ import _image_preprocess, _data_postprocess
|
10 |
-
|
11 |
-
_EYE_MODELS = [
|
12 |
-
'eye_detect_v1.0_s',
|
13 |
-
'eye_detect_v1.0_n',
|
14 |
-
'eye_detect_v0.8_s',
|
15 |
-
'eye_detect_v0.7_s',
|
16 |
-
'eye_detect_v0.6_s',
|
17 |
-
'eye_detect_v0.5_s',
|
18 |
-
'eye_detect_v0.4_s',
|
19 |
-
'eye_detect_v0.3_s',
|
20 |
-
'eye_detect_v0.2_s',
|
21 |
-
]
|
22 |
-
_DEFAULT_EYE_MODEL = _EYE_MODELS[0]
|
23 |
-
|
24 |
-
|
25 |
-
@lru_cache()
|
26 |
-
def _open_eye_detect_model(model_name):
|
27 |
-
return _open_onnx_model(hf_hub_download(
|
28 |
-
f'deepghs/anime_eye_detection',
|
29 |
-
f'{model_name}/model.onnx'
|
30 |
-
))
|
31 |
-
|
32 |
-
|
33 |
-
_LABELS = ['eye']
|
34 |
-
|
35 |
-
|
36 |
-
def detect_eyes(image: ImageTyping, model_name: str, max_infer_size=640,
|
37 |
-
conf_threshold: float = 0.3, iou_threshold: float = 0.3) \
|
38 |
-
-> List[Tuple[Tuple[int, int, int, int], str, float]]:
|
39 |
-
image = load_image(image, mode='RGB')
|
40 |
-
new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
|
41 |
-
|
42 |
-
data = rgb_encode(new_image)[None, ...]
|
43 |
-
output, = _open_eye_detect_model(model_name).run(['output0'], {'images': data})
|
44 |
-
return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
|
45 |
-
|
46 |
-
|
47 |
-
def _gr_detect_eyes(image: ImageTyping, model_name: str, max_infer_size=640,
|
48 |
-
conf_threshold: float = 0.3, iou_threshold: float = 0.3):
|
49 |
-
ret = detect_eyes(image, model_name, max_infer_size, conf_threshold, iou_threshold)
|
50 |
-
return detection_visualize(image, ret, _LABELS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
face.py
DELETED
@@ -1,52 +0,0 @@
|
|
1 |
-
from functools import lru_cache
|
2 |
-
from typing import List, Tuple
|
3 |
-
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
-
from imgutils.data import ImageTyping, load_image, rgb_encode
|
6 |
-
|
7 |
-
from onnx_ import _open_onnx_model
|
8 |
-
from plot import detection_visualize
|
9 |
-
from yolo_ import _image_preprocess, _data_postprocess
|
10 |
-
|
11 |
-
_FACE_MODELS = [
|
12 |
-
'face_detect_v1.4_s',
|
13 |
-
'face_detect_v1.4_n',
|
14 |
-
'face_detect_v1.3_s',
|
15 |
-
'face_detect_v1.3_n',
|
16 |
-
'face_detect_v1.2_s',
|
17 |
-
'face_detect_v1.1_s',
|
18 |
-
'face_detect_v1.1_n',
|
19 |
-
'face_detect_v1_s',
|
20 |
-
'face_detect_v1_n',
|
21 |
-
'face_detect_v0_s',
|
22 |
-
'face_detect_v0_n',
|
23 |
-
]
|
24 |
-
_DEFAULT_FACE_MODEL = _FACE_MODELS[0]
|
25 |
-
|
26 |
-
|
27 |
-
@lru_cache()
|
28 |
-
def _open_face_detect_model(model_name):
|
29 |
-
return _open_onnx_model(hf_hub_download(
|
30 |
-
f'deepghs/anime_face_detection',
|
31 |
-
f'{model_name}/model.onnx',
|
32 |
-
))
|
33 |
-
|
34 |
-
|
35 |
-
_LABELS = ['face']
|
36 |
-
|
37 |
-
|
38 |
-
def detect_faces(image: ImageTyping, model_name: str, max_infer_size=640,
|
39 |
-
conf_threshold: float = 0.25, iou_threshold: float = 0.7) \
|
40 |
-
-> List[Tuple[Tuple[int, int, int, int], str, float]]:
|
41 |
-
image = load_image(image, mode='RGB')
|
42 |
-
new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
|
43 |
-
|
44 |
-
data = rgb_encode(new_image)[None, ...]
|
45 |
-
output, = _open_face_detect_model(model_name).run(['output0'], {'images': data})
|
46 |
-
return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
|
47 |
-
|
48 |
-
|
49 |
-
def _gr_detect_faces(image: ImageTyping, model_name: str, max_infer_size=640,
|
50 |
-
conf_threshold: float = 0.25, iou_threshold: float = 0.7):
|
51 |
-
ret = detect_faces(image, model_name, max_infer_size, conf_threshold, iou_threshold)
|
52 |
-
return detection_visualize(image, ret, _LABELS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
halfbody.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
from functools import lru_cache
|
2 |
-
from typing import List, Tuple
|
3 |
-
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
-
from imgutils.data import ImageTyping, load_image, rgb_encode
|
6 |
-
|
7 |
-
from onnx_ import _open_onnx_model
|
8 |
-
from plot import detection_visualize
|
9 |
-
from yolo_ import _image_preprocess, _data_postprocess
|
10 |
-
|
11 |
-
_HALFBODY_MODELS = [
|
12 |
-
'halfbody_detect_v0.4_s',
|
13 |
-
'halfbody_detect_v0.3_s',
|
14 |
-
'halfbody_detect_v0.2_s',
|
15 |
-
]
|
16 |
-
_DEFAULT_HALFBODY_MODEL = _HALFBODY_MODELS[0]
|
17 |
-
|
18 |
-
|
19 |
-
@lru_cache()
|
20 |
-
def _open_halfbody_detect_model(model_name):
|
21 |
-
return _open_onnx_model(hf_hub_download(
|
22 |
-
f'deepghs/anime_halfbody_detection',
|
23 |
-
f'{model_name}/model.onnx'
|
24 |
-
))
|
25 |
-
|
26 |
-
|
27 |
-
_LABELS = ['haldbody']
|
28 |
-
|
29 |
-
|
30 |
-
def detect_halfbodies(image: ImageTyping, model_name: str, max_infer_size=640,
|
31 |
-
conf_threshold: float = 0.25, iou_threshold: float = 0.5) \
|
32 |
-
-> List[Tuple[Tuple[int, int, int, int], str, float]]:
|
33 |
-
image = load_image(image, mode='RGB')
|
34 |
-
new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
|
35 |
-
|
36 |
-
data = rgb_encode(new_image)[None, ...]
|
37 |
-
output, = _open_halfbody_detect_model(model_name).run(['output0'], {'images': data})
|
38 |
-
return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
|
39 |
-
|
40 |
-
|
41 |
-
def _gr_detect_halfbodies(image: ImageTyping, model_name: str, max_infer_size=640,
|
42 |
-
conf_threshold: float = 0.25, iou_threshold: float = 0.5):
|
43 |
-
ret = detect_halfbodies(image, model_name, max_infer_size, conf_threshold, iou_threshold)
|
44 |
-
return detection_visualize(image, ret, _LABELS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hand.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
from functools import lru_cache
|
2 |
-
from typing import List, Tuple
|
3 |
-
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
-
from imgutils.data import ImageTyping, load_image, rgb_encode
|
6 |
-
|
7 |
-
from onnx_ import _open_onnx_model
|
8 |
-
from plot import detection_visualize
|
9 |
-
from yolo_ import _image_preprocess, _data_postprocess
|
10 |
-
|
11 |
-
_HAND_MODELS = [
|
12 |
-
'hand_detect_v0.7_s',
|
13 |
-
'hand_detect_v0.6_s',
|
14 |
-
'hand_detect_v0.5_s',
|
15 |
-
'hand_detect_v0.4_s',
|
16 |
-
'hand_detect_v0.3_s',
|
17 |
-
'hand_detect_v0.2_s',
|
18 |
-
'hand_detect_v0.1_s',
|
19 |
-
'hand_detect_v0.1_n',
|
20 |
-
]
|
21 |
-
_DEFAULT_HAND_MODEL = _HAND_MODELS[0]
|
22 |
-
|
23 |
-
|
24 |
-
@lru_cache()
|
25 |
-
def _open_hand_detect_model(model_name):
|
26 |
-
return _open_onnx_model(hf_hub_download(
|
27 |
-
f'deepghs/anime_hand_detection',
|
28 |
-
f'{model_name}/model.onnx'
|
29 |
-
))
|
30 |
-
|
31 |
-
|
32 |
-
_LABELS = ['hand']
|
33 |
-
|
34 |
-
|
35 |
-
def detect_hands(image: ImageTyping, model_name: str, max_infer_size=640,
|
36 |
-
conf_threshold: float = 0.35, iou_threshold: float = 0.7) \
|
37 |
-
-> List[Tuple[Tuple[int, int, int, int], str, float]]:
|
38 |
-
image = load_image(image, mode='RGB')
|
39 |
-
new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
|
40 |
-
|
41 |
-
data = rgb_encode(new_image)[None, ...]
|
42 |
-
output, = _open_hand_detect_model(model_name).run(['output0'], {'images': data})
|
43 |
-
return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
|
44 |
-
|
45 |
-
|
46 |
-
def _gr_detect_hands(image: ImageTyping, model_name: str, max_infer_size=640,
|
47 |
-
conf_threshold: float = 0.35, iou_threshold: float = 0.7):
|
48 |
-
ret = detect_hands(image, model_name, max_infer_size, conf_threshold, iou_threshold)
|
49 |
-
return detection_visualize(image, ret, _LABELS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
head.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
from functools import lru_cache
|
2 |
-
from typing import List, Tuple
|
3 |
-
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
-
from imgutils.data import ImageTyping, load_image, rgb_encode
|
6 |
-
|
7 |
-
from onnx_ import _open_onnx_model
|
8 |
-
from plot import detection_visualize
|
9 |
-
from yolo_ import _image_preprocess, _data_postprocess
|
10 |
-
|
11 |
-
_HEAD_MODELS = [
|
12 |
-
'head_detect_best_s.onnx',
|
13 |
-
'head_detect_best_n.onnx',
|
14 |
-
]
|
15 |
-
_DEFAULT_HEAD_MODEL = _HEAD_MODELS[0]
|
16 |
-
|
17 |
-
|
18 |
-
@lru_cache()
|
19 |
-
def _open_head_detect_model(model_name):
|
20 |
-
return _open_onnx_model(hf_hub_download(
|
21 |
-
'deepghs/imgutils-models',
|
22 |
-
f'head_detect/{model_name}'
|
23 |
-
))
|
24 |
-
|
25 |
-
|
26 |
-
_LABELS = ['head']
|
27 |
-
|
28 |
-
|
29 |
-
def detect_heads(image: ImageTyping, model_name: str, max_infer_size=640,
|
30 |
-
conf_threshold: float = 0.45, iou_threshold: float = 0.7) \
|
31 |
-
-> List[Tuple[Tuple[int, int, int, int], str, float]]:
|
32 |
-
image = load_image(image, mode='RGB')
|
33 |
-
new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
|
34 |
-
|
35 |
-
data = rgb_encode(new_image)[None, ...]
|
36 |
-
output, = _open_head_detect_model(model_name).run(['output0'], {'images': data})
|
37 |
-
return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
|
38 |
-
|
39 |
-
|
40 |
-
def _gr_detect_heads(image: ImageTyping, model_name: str, max_infer_size=640,
|
41 |
-
conf_threshold: float = 0.45, iou_threshold: float = 0.7):
|
42 |
-
ret = detect_heads(image, model_name, max_infer_size, conf_threshold, iou_threshold)
|
43 |
-
return detection_visualize(image, ret, _LABELS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
manbits.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
from functools import lru_cache
|
2 |
-
from typing import List, Tuple
|
3 |
-
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
-
from imgutils.data import ImageTyping, load_image, rgb_encode
|
6 |
-
|
7 |
-
from onnx_ import _open_onnx_model
|
8 |
-
from plot import detection_visualize
|
9 |
-
from yolo_ import _image_preprocess, _data_postprocess
|
10 |
-
|
11 |
-
_MANBIT_MODELS = [
|
12 |
-
'manbits_detect_best_m.onnx',
|
13 |
-
]
|
14 |
-
_DEFAULT_MANBIT_MODEL = _MANBIT_MODELS[0]
|
15 |
-
|
16 |
-
|
17 |
-
@lru_cache()
|
18 |
-
def _open_manbits_detect_model(model_name):
|
19 |
-
return _open_onnx_model(hf_hub_download(
|
20 |
-
'deepghs/imgutils-models',
|
21 |
-
f'manbits_detect/{model_name}'
|
22 |
-
))
|
23 |
-
|
24 |
-
|
25 |
-
_LABELS = [
|
26 |
-
'EXPOSED_BELLY', 'EXPOSED_BREAST_F', 'EXPOSED_BREAST_M',
|
27 |
-
'EXPOSED_BUTTOCKS', 'EXPOSED_GENITALIA_F', 'EXPOSED_GENITALIA_M'
|
28 |
-
]
|
29 |
-
|
30 |
-
|
31 |
-
def detect_manbits(image: ImageTyping, model_name: str, max_infer_size=640,
|
32 |
-
conf_threshold: float = 0.25, iou_threshold: float = 0.7) \
|
33 |
-
-> List[Tuple[Tuple[int, int, int, int], str, float]]:
|
34 |
-
image = load_image(image, mode='RGB')
|
35 |
-
new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
|
36 |
-
|
37 |
-
data = rgb_encode(new_image)[None, ...]
|
38 |
-
output, = _open_manbits_detect_model(model_name).run(['output0'], {'images': data})
|
39 |
-
return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
|
40 |
-
|
41 |
-
|
42 |
-
def _gr_detect_manbits(image: ImageTyping, model_name: str, max_infer_size=640,
|
43 |
-
conf_threshold: float = 0.25, iou_threshold: float = 0.7):
|
44 |
-
ret = detect_manbits(image, model_name, max_infer_size, conf_threshold, iou_threshold)
|
45 |
-
return detection_visualize(image, ret, _LABELS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onnx_.py
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import os
|
3 |
-
import shutil
|
4 |
-
from functools import lru_cache
|
5 |
-
from typing import Optional
|
6 |
-
|
7 |
-
from hbutils.system import pip_install
|
8 |
-
|
9 |
-
|
10 |
-
def _ensure_onnxruntime():
|
11 |
-
try:
|
12 |
-
import onnxruntime
|
13 |
-
except (ImportError, ModuleNotFoundError):
|
14 |
-
logging.warning('Onnx runtime not installed, preparing to install ...')
|
15 |
-
if shutil.which('nvidia-smi'):
|
16 |
-
logging.info('Installing onnxruntime-gpu ...')
|
17 |
-
pip_install(['onnxruntime-gpu'], silent=True)
|
18 |
-
else:
|
19 |
-
logging.info('Installing onnxruntime (cpu) ...')
|
20 |
-
pip_install(['onnxruntime'], silent=True)
|
21 |
-
|
22 |
-
|
23 |
-
_ensure_onnxruntime()
|
24 |
-
from onnxruntime import get_available_providers, get_all_providers, InferenceSession, SessionOptions, \
|
25 |
-
GraphOptimizationLevel
|
26 |
-
|
27 |
-
alias = {
|
28 |
-
'gpu': "CUDAExecutionProvider",
|
29 |
-
"trt": "TensorrtExecutionProvider",
|
30 |
-
}
|
31 |
-
|
32 |
-
|
33 |
-
def get_onnx_provider(provider: Optional[str] = None):
|
34 |
-
if not provider:
|
35 |
-
if "CUDAExecutionProvider" in get_available_providers():
|
36 |
-
return "CUDAExecutionProvider"
|
37 |
-
else:
|
38 |
-
return "CPUExecutionProvider"
|
39 |
-
elif provider.lower() in alias:
|
40 |
-
return alias[provider.lower()]
|
41 |
-
else:
|
42 |
-
for p in get_all_providers():
|
43 |
-
if provider.lower() == p.lower() or f'{provider}ExecutionProvider'.lower() == p.lower():
|
44 |
-
return p
|
45 |
-
|
46 |
-
raise ValueError(f'One of the {get_all_providers()!r} expected, '
|
47 |
-
f'but unsupported provider {provider!r} found.')
|
48 |
-
|
49 |
-
|
50 |
-
@lru_cache()
|
51 |
-
def _open_onnx_model(ckpt: str, provider: str = None) -> InferenceSession:
|
52 |
-
options = SessionOptions()
|
53 |
-
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
|
54 |
-
provider = provider or get_onnx_provider()
|
55 |
-
if provider == "CPUExecutionProvider":
|
56 |
-
options.intra_op_num_threads = os.cpu_count()
|
57 |
-
|
58 |
-
logging.info(f'Model {ckpt!r} loaded with provider {provider!r}')
|
59 |
-
return InferenceSession(ckpt, options, [provider])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
person.py
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
from functools import lru_cache
|
2 |
-
|
3 |
-
from huggingface_hub import hf_hub_download
|
4 |
-
from imgutils.data import ImageTyping, load_image, rgb_encode
|
5 |
-
|
6 |
-
from onnx_ import _open_onnx_model
|
7 |
-
from plot import detection_visualize
|
8 |
-
from yolo_ import _image_preprocess, _data_postprocess
|
9 |
-
|
10 |
-
_PERSON_MODELS = [
|
11 |
-
'person_detect_plus_v1.1_best_m.onnx',
|
12 |
-
'person_detect_plus_v1.1_best_s.onnx',
|
13 |
-
'person_detect_plus_v1.1_best_n.onnx',
|
14 |
-
'person_detect_plus_best_m.onnx',
|
15 |
-
'person_detect_best_m.onnx',
|
16 |
-
'person_detect_best_x.onnx',
|
17 |
-
'person_detect_best_s.onnx',
|
18 |
-
]
|
19 |
-
_DEFAULT_PERSON_MODEL = _PERSON_MODELS[0]
|
20 |
-
|
21 |
-
|
22 |
-
@lru_cache()
|
23 |
-
def _open_person_detect_model(model_name):
|
24 |
-
return _open_onnx_model(hf_hub_download(
|
25 |
-
'deepghs/imgutils-models',
|
26 |
-
f'person_detect/{model_name}'
|
27 |
-
))
|
28 |
-
|
29 |
-
|
30 |
-
_LABELS = ['person']
|
31 |
-
|
32 |
-
|
33 |
-
def detect_person(image: ImageTyping, model_name: str, max_infer_size=640,
|
34 |
-
conf_threshold: float = 0.3, iou_threshold: float = 0.5):
|
35 |
-
image = load_image(image, mode='RGB')
|
36 |
-
new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
|
37 |
-
|
38 |
-
data = rgb_encode(new_image)[None, ...]
|
39 |
-
output, = _open_person_detect_model(model_name).run(['output0'], {'images': data})
|
40 |
-
return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
|
41 |
-
|
42 |
-
|
43 |
-
def _gr_detect_person(image: ImageTyping, model_name: str, max_infer_size=640,
|
44 |
-
conf_threshold: float = 0.3, iou_threshold: float = 0.5):
|
45 |
-
ret = detect_person(image, model_name, max_infer_size, conf_threshold, iou_threshold)
|
46 |
-
return detection_visualize(image, ret, _LABELS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plot.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Overview:
|
3 |
-
Visualize the detection results.
|
4 |
-
|
5 |
-
See :func:`imgutils.detect.face.detect_faces` and :func:`imgutils.detect.person.detect_person` for examples.
|
6 |
-
"""
|
7 |
-
from typing import List, Tuple, Optional
|
8 |
-
|
9 |
-
from PIL import ImageFont, ImageDraw
|
10 |
-
from hbutils.color import rnd_colors, Color
|
11 |
-
from imgutils.data import ImageTyping, load_image
|
12 |
-
|
13 |
-
|
14 |
-
def _try_get_font_from_matplotlib(fontsize: int = 12):
|
15 |
-
try:
|
16 |
-
# noinspection PyPackageRequirements
|
17 |
-
import matplotlib
|
18 |
-
except (ModuleNotFoundError, ImportError):
|
19 |
-
return None
|
20 |
-
else:
|
21 |
-
# noinspection PyPackageRequirements
|
22 |
-
from matplotlib.font_manager import findfont, FontProperties
|
23 |
-
font = findfont(FontProperties(family=['sans-serif']))
|
24 |
-
return ImageFont.truetype(font, fontsize)
|
25 |
-
|
26 |
-
|
27 |
-
def detection_visualize(image: ImageTyping, detection: List[Tuple[Tuple[float, float, float, float], str, float]],
|
28 |
-
labels: Optional[List[str]] = None, text_padding: int = 6, fontsize: int = 12,
|
29 |
-
no_label: bool = False):
|
30 |
-
"""
|
31 |
-
Overview:
|
32 |
-
Visualize the results of the object detection.
|
33 |
-
|
34 |
-
:param image: Image be detected.
|
35 |
-
:param detection: The detection results list, each item includes the detected area `(x0, y0, x1, y1)`,
|
36 |
-
the target type (always `head`) and the target confidence score.
|
37 |
-
:param labels: An array of known labels. If not provided, the labels will be automatically detected
|
38 |
-
from the given ``detection``.
|
39 |
-
:param text_padding: Text padding of the labels. Default is ``6``.
|
40 |
-
:param fontsize: Font size of the labels. At runtime, an attempt will be made to retrieve the font used
|
41 |
-
for rendering from `matplotlib`. Therefore, if `matplotlib` is not installed, only the default pixel font
|
42 |
-
provided with `Pillow` can be used, and the font size cannot be changed.
|
43 |
-
:param no_label: Do not show labels. Default is ``False``.
|
44 |
-
:return: A `PIL` image with the same size as the provided image `image`, which contains the original image
|
45 |
-
content as well as the visualized bounding boxes.
|
46 |
-
|
47 |
-
Examples::
|
48 |
-
See :func:`imgutils.detect.face.detect_faces` and :func:`imgutils.detect.person.detect_person` for examples.
|
49 |
-
"""
|
50 |
-
image = load_image(image, force_background=None, mode='RGBA')
|
51 |
-
visual_image = image.copy()
|
52 |
-
draw = ImageDraw.Draw(visual_image, mode='RGBA')
|
53 |
-
font = _try_get_font_from_matplotlib(fontsize) or ImageFont.load_default()
|
54 |
-
|
55 |
-
labels = sorted(labels or {label for _, label, _ in detection})
|
56 |
-
_colors = list(map(str, rnd_colors(len(labels))))
|
57 |
-
_color_map = dict(zip(labels, _colors))
|
58 |
-
for (xmin, ymin, xmax, ymax), label, score in detection:
|
59 |
-
box_color = _color_map[label]
|
60 |
-
draw.rectangle((xmin, ymin, xmax, ymax), outline=box_color, width=2)
|
61 |
-
|
62 |
-
if not no_label:
|
63 |
-
label_text = f'{label}: {score * 100:.2f}%'
|
64 |
-
_t_x0, _t_y0, _t_x1, _t_y1 = draw.textbbox((xmin, ymin), label_text, font=font)
|
65 |
-
_t_width, _t_height = _t_x1 - _t_x0, _t_y1 - _t_y0
|
66 |
-
if ymin - _t_height - text_padding < 0:
|
67 |
-
_t_text_rect = (xmin, ymin, xmin + _t_width + text_padding * 2, ymin + _t_height + text_padding * 2)
|
68 |
-
_t_text_co = (xmin + text_padding, ymin + text_padding)
|
69 |
-
else:
|
70 |
-
_t_text_rect = (xmin, ymin - _t_height - text_padding * 2, xmin + _t_width + text_padding * 2, ymin)
|
71 |
-
_t_text_co = (xmin + text_padding, ymin - _t_height - text_padding)
|
72 |
-
|
73 |
-
draw.rectangle(_t_text_rect, fill=str(Color(box_color, alpha=0.5)))
|
74 |
-
draw.text(_t_text_co, label_text, fill="black", font=font)
|
75 |
-
|
76 |
-
return visual_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yolo_.py
DELETED
@@ -1,110 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from typing import List
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
|
7 |
-
|
8 |
-
def _yolo_xywh2xyxy(x: np.ndarray) -> np.ndarray:
|
9 |
-
"""
|
10 |
-
Copied from yolov8.
|
11 |
-
|
12 |
-
Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the
|
13 |
-
top-left corner and (x2, y2) is the bottom-right corner.
|
14 |
-
|
15 |
-
Args:
|
16 |
-
x (np.ndarray) or (torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.
|
17 |
-
Returns:
|
18 |
-
y (np.ndarray) or (torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
|
19 |
-
"""
|
20 |
-
y = np.copy(x)
|
21 |
-
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
|
22 |
-
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
|
23 |
-
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
|
24 |
-
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
|
25 |
-
return y
|
26 |
-
|
27 |
-
|
28 |
-
def _yolo_nms(boxes, scores, thresh: float = 0.7) -> List[int]:
|
29 |
-
"""
|
30 |
-
dets: ndarray, (num_boxes, 5)
|
31 |
-
每一行表示一个bounding box:[xmin, ymin, xmax, ymax, score]
|
32 |
-
其中xmin, ymin, xmax, ymax分别表示框的左上角和右下角坐标,score表示框的分数
|
33 |
-
thresh: float
|
34 |
-
两个框的IoU阈值
|
35 |
-
"""
|
36 |
-
x1 = boxes[:, 0]
|
37 |
-
y1 = boxes[:, 1]
|
38 |
-
x2 = boxes[:, 2]
|
39 |
-
y2 = boxes[:, 3]
|
40 |
-
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
41 |
-
|
42 |
-
# 按照score降序排列
|
43 |
-
order = scores.argsort()[::-1]
|
44 |
-
|
45 |
-
keep = []
|
46 |
-
while order.size > 0:
|
47 |
-
i = order[0]
|
48 |
-
keep.append(i)
|
49 |
-
# 计算其他所有框与当前框的IoU
|
50 |
-
xx1 = np.maximum(x1[i], x1[order[1:]])
|
51 |
-
yy1 = np.maximum(y1[i], y1[order[1:]])
|
52 |
-
xx2 = np.minimum(x2[i], x2[order[1:]])
|
53 |
-
yy2 = np.minimum(y2[i], y2[order[1:]])
|
54 |
-
|
55 |
-
w = np.maximum(0.0, xx2 - xx1 + 1)
|
56 |
-
h = np.maximum(0.0, yy2 - yy1 + 1)
|
57 |
-
|
58 |
-
inter = w * h
|
59 |
-
iou = inter / (areas[i] + areas[order[1:]] - inter)
|
60 |
-
|
61 |
-
# 保留IoU小于阈值的框
|
62 |
-
inds = np.where(iou <= thresh)[0]
|
63 |
-
order = order[inds + 1]
|
64 |
-
|
65 |
-
return keep
|
66 |
-
|
67 |
-
|
68 |
-
def _image_preprocess(image: Image.Image, max_infer_size: int = 640, align: int = 32):
|
69 |
-
old_width, old_height = image.width, image.height
|
70 |
-
new_width, new_height = old_width, old_height
|
71 |
-
r = max_infer_size / max(new_width, new_height)
|
72 |
-
if r < 1:
|
73 |
-
new_width, new_height = new_width * r, new_height * r
|
74 |
-
new_width = int(math.ceil(new_width / align) * align)
|
75 |
-
new_height = int(math.ceil(new_height / align) * align)
|
76 |
-
image = image.resize((new_width, new_height))
|
77 |
-
return image, (old_width, old_height), (new_width, new_height)
|
78 |
-
|
79 |
-
|
80 |
-
def _xy_postprocess(x, y, old_size, new_size):
|
81 |
-
old_width, old_height = old_size
|
82 |
-
new_width, new_height = new_size
|
83 |
-
x, y = x / new_width * old_width, y / new_height * old_height
|
84 |
-
x = int(np.clip(x, a_min=0, a_max=old_width).round())
|
85 |
-
y = int(np.clip(y, a_min=0, a_max=old_height).round())
|
86 |
-
return x, y
|
87 |
-
|
88 |
-
|
89 |
-
def _data_postprocess(output, conf_threshold, iou_threshold, old_size, new_size, labels: List[str]):
|
90 |
-
max_scores = output[4:, :].max(axis=0)
|
91 |
-
output = output[:, max_scores > conf_threshold].transpose(1, 0)
|
92 |
-
boxes = output[:, :4]
|
93 |
-
scores = output[:, 4:]
|
94 |
-
filtered_max_scores = scores.max(axis=1)
|
95 |
-
|
96 |
-
if not boxes.size:
|
97 |
-
return []
|
98 |
-
|
99 |
-
boxes = _yolo_xywh2xyxy(boxes)
|
100 |
-
idx = _yolo_nms(boxes, filtered_max_scores, thresh=iou_threshold)
|
101 |
-
boxes, scores = boxes[idx], scores[idx]
|
102 |
-
|
103 |
-
detections = []
|
104 |
-
for box, score in zip(boxes, scores):
|
105 |
-
x0, y0 = _xy_postprocess(box[0], box[1], old_size, new_size)
|
106 |
-
x1, y1 = _xy_postprocess(box[2], box[3], old_size, new_size)
|
107 |
-
max_score_id = score.argmax()
|
108 |
-
detections.append(((x0, y0, x1, y1), labels[max_score_id], float(score[max_score_id])))
|
109 |
-
|
110 |
-
return detections
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|