narugo1992 commited on
Commit
4818b14
1 Parent(s): 99411de

dev(narugo): update sizes

Browse files
Files changed (5) hide show
  1. app.py +3 -3
  2. face.py +3 -3
  3. manbits.py +3 -3
  4. person.py +3 -3
  5. yolo_.py +1 -1
app.py CHANGED
@@ -14,7 +14,7 @@ if __name__ == '__main__':
14
  with gr.Column():
15
  gr_face_input_image = gr.Image(type='pil', label='Original Image')
16
  gr_face_model = gr.Dropdown(_FACE_MODELS, value=_DEFAULT_FACE_MODEL, label='Model')
17
- gr_face_infer_size = gr.Slider(480, 1600, value=1216, step=32, label='Max Infer Size')
18
  with gr.Row():
19
  gr_face_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
20
  gr_face_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')
@@ -38,7 +38,7 @@ if __name__ == '__main__':
38
  with gr.Column():
39
  gr_person_input_image = gr.Image(type='pil', label='Original Image')
40
  gr_person_model = gr.Dropdown(_PERSON_MODELS, value=_DEFAULT_PERSON_MODEL, label='Model')
41
- gr_person_infer_size = gr.Slider(480, 1600, value=1216, step=32, label='Max Infer Size')
42
  with gr.Row():
43
  gr_person_iou_threshold = gr.Slider(0.0, 1.0, 0.5, label='IOU Threshold')
44
  gr_person_score_threshold = gr.Slider(0.0, 1.0, 0.3, label='Score Threshold')
@@ -62,7 +62,7 @@ if __name__ == '__main__':
62
  with gr.Column():
63
  gr_manbit_input_image = gr.Image(type='pil', label='Original Image')
64
  gr_manbit_model = gr.Dropdown(_MANBIT_MODELS, value=_DEFAULT_MANBIT_MODEL, label='Model')
65
- gr_manbit_infer_size = gr.Slider(480, 1600, value=1216, step=32, label='Max Infer Size')
66
  with gr.Row():
67
  gr_manbit_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
68
  gr_manbit_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')
 
14
  with gr.Column():
15
  gr_face_input_image = gr.Image(type='pil', label='Original Image')
16
  gr_face_model = gr.Dropdown(_FACE_MODELS, value=_DEFAULT_FACE_MODEL, label='Model')
17
+ gr_face_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
18
  with gr.Row():
19
  gr_face_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
20
  gr_face_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')
 
38
  with gr.Column():
39
  gr_person_input_image = gr.Image(type='pil', label='Original Image')
40
  gr_person_model = gr.Dropdown(_PERSON_MODELS, value=_DEFAULT_PERSON_MODEL, label='Model')
41
+ gr_person_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
42
  with gr.Row():
43
  gr_person_iou_threshold = gr.Slider(0.0, 1.0, 0.5, label='IOU Threshold')
44
  gr_person_score_threshold = gr.Slider(0.0, 1.0, 0.3, label='Score Threshold')
 
62
  with gr.Column():
63
  gr_manbit_input_image = gr.Image(type='pil', label='Original Image')
64
  gr_manbit_model = gr.Dropdown(_MANBIT_MODELS, value=_DEFAULT_MANBIT_MODEL, label='Model')
65
+ gr_manbit_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
66
  with gr.Row():
67
  gr_manbit_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
68
  gr_manbit_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')
face.py CHANGED
@@ -26,18 +26,18 @@ def _open_face_detect_model(model_name):
26
  _LABELS = ['head']
27
 
28
 
29
- def detect_faces(image: ImageTyping, level: str = 's', max_infer_size=1216,
30
  conf_threshold: float = 0.25, iou_threshold: float = 0.7) \
31
  -> List[Tuple[Tuple[int, int, int, int], str, float]]:
32
  image = load_image(image, mode='RGB')
33
  new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
34
 
35
  data = rgb_encode(new_image)[None, ...]
36
- output, = _open_face_detect_model(level).run(['output0'], {'images': data})
37
  return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
38
 
39
 
40
- def _gr_detect_faces(image: ImageTyping, model_name: str, max_infer_size=1216,
41
  conf_threshold: float = 0.25, iou_threshold: float = 0.7):
42
  ret = detect_faces(image, model_name, max_infer_size, conf_threshold, iou_threshold)
43
  return detection_visualize(image, ret, _LABELS)
 
26
  _LABELS = ['head']
27
 
28
 
29
+ def detect_faces(image: ImageTyping, model_name: str, max_infer_size=640,
30
  conf_threshold: float = 0.25, iou_threshold: float = 0.7) \
31
  -> List[Tuple[Tuple[int, int, int, int], str, float]]:
32
  image = load_image(image, mode='RGB')
33
  new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
34
 
35
  data = rgb_encode(new_image)[None, ...]
36
+ output, = _open_face_detect_model(model_name).run(['output0'], {'images': data})
37
  return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
38
 
39
 
40
+ def _gr_detect_faces(image: ImageTyping, model_name: str, max_infer_size=640,
41
  conf_threshold: float = 0.25, iou_threshold: float = 0.7):
42
  ret = detect_faces(image, model_name, max_infer_size, conf_threshold, iou_threshold)
43
  return detection_visualize(image, ret, _LABELS)
manbits.py CHANGED
@@ -28,18 +28,18 @@ _LABELS = [
28
  ]
29
 
30
 
31
- def detect_manbits(image: ImageTyping, level: str = 'm', max_infer_size=1216,
32
  conf_threshold: float = 0.25, iou_threshold: float = 0.7) \
33
  -> List[Tuple[Tuple[int, int, int, int], str, float]]:
34
  image = load_image(image, mode='RGB')
35
  new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
36
 
37
  data = rgb_encode(new_image)[None, ...]
38
- output, = _open_manbits_detect_model(level).run(['output0'], {'images': data})
39
  return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
40
 
41
 
42
- def _gr_detect_manbits(image: ImageTyping, model_name: str, max_infer_size=1216,
43
  conf_threshold: float = 0.25, iou_threshold: float = 0.7):
44
  ret = detect_manbits(image, model_name, max_infer_size, conf_threshold, iou_threshold)
45
  return detection_visualize(image, ret, _LABELS)
 
28
  ]
29
 
30
 
31
+ def detect_manbits(image: ImageTyping, model_name: str, max_infer_size=640,
32
  conf_threshold: float = 0.25, iou_threshold: float = 0.7) \
33
  -> List[Tuple[Tuple[int, int, int, int], str, float]]:
34
  image = load_image(image, mode='RGB')
35
  new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
36
 
37
  data = rgb_encode(new_image)[None, ...]
38
+ output, = _open_manbits_detect_model(model_name).run(['output0'], {'images': data})
39
  return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
40
 
41
 
42
+ def _gr_detect_manbits(image: ImageTyping, model_name: str, max_infer_size=640,
43
  conf_threshold: float = 0.25, iou_threshold: float = 0.7):
44
  ret = detect_manbits(image, model_name, max_infer_size, conf_threshold, iou_threshold)
45
  return detection_visualize(image, ret, _LABELS)
person.py CHANGED
@@ -27,17 +27,17 @@ def _open_person_detect_model(model_name):
27
  _LABELS = ['person']
28
 
29
 
30
- def detect_person(image: ImageTyping, level: str = 's', max_infer_size=1216,
31
  conf_threshold: float = 0.3, iou_threshold: float = 0.5):
32
  image = load_image(image, mode='RGB')
33
  new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
34
 
35
  data = rgb_encode(new_image)[None, ...]
36
- output, = _open_person_detect_model(level).run(['output0'], {'images': data})
37
  return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
38
 
39
 
40
- def _gr_detect_person(image: ImageTyping, model_name: str, max_infer_size=1216,
41
  conf_threshold: float = 0.3, iou_threshold: float = 0.5):
42
  ret = detect_person(image, model_name, max_infer_size, conf_threshold, iou_threshold)
43
  return detection_visualize(image, ret, _LABELS)
 
27
  _LABELS = ['person']
28
 
29
 
30
+ def detect_person(image: ImageTyping, model_name: str, max_infer_size=640,
31
  conf_threshold: float = 0.3, iou_threshold: float = 0.5):
32
  image = load_image(image, mode='RGB')
33
  new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
34
 
35
  data = rgb_encode(new_image)[None, ...]
36
+ output, = _open_person_detect_model(model_name).run(['output0'], {'images': data})
37
  return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS)
38
 
39
 
40
+ def _gr_detect_person(image: ImageTyping, model_name: str, max_infer_size=640,
41
  conf_threshold: float = 0.3, iou_threshold: float = 0.5):
42
  ret = detect_person(image, model_name, max_infer_size, conf_threshold, iou_threshold)
43
  return detection_visualize(image, ret, _LABELS)
yolo_.py CHANGED
@@ -65,7 +65,7 @@ def _yolo_nms(boxes, scores, thresh: float = 0.7) -> List[int]:
65
  return keep
66
 
67
 
68
- def _image_preprocess(image: Image.Image, max_infer_size: int = 1216, align: int = 32):
69
  old_width, old_height = image.width, image.height
70
  new_width, new_height = old_width, old_height
71
  r = max_infer_size / max(new_width, new_height)
 
65
  return keep
66
 
67
 
68
+ def _image_preprocess(image: Image.Image, max_infer_size: int = 640, align: int = 32):
69
  old_width, old_height = image.width, image.height
70
  new_width, new_height = old_width, old_height
71
  r = max_infer_size / max(new_width, new_height)