update space
Browse files- app.py +120 -83
- conf_dd_one.yaml +57 -18
app.py
CHANGED
|
@@ -1,27 +1,33 @@
|
|
| 1 |
import os
|
| 2 |
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
|
| 3 |
|
|
|
|
|
|
|
| 4 |
# work around: https://discuss.huggingface.co/t/how-to-install-a-specific-version-of-gradio-in-spaces/13552
|
| 5 |
os.system("pip uninstall -y gradio")
|
| 6 |
os.system("pip install gradio==3.4.1")
|
|
|
|
| 7 |
|
| 8 |
from os import getcwd, path, environ
|
| 9 |
import deepdoctection as dd
|
| 10 |
from deepdoctection.dataflow.serialize import DataFromList
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
import gradio as gr
|
| 13 |
|
| 14 |
|
| 15 |
_DD_ONE = "conf_dd_one.yaml"
|
| 16 |
-
|
| 17 |
|
| 18 |
-
dd.ModelCatalog.register("
|
| 19 |
-
name="
|
| 20 |
-
description="
|
| 21 |
-
config="
|
| 22 |
size=[274632215],
|
| 23 |
tp_model=False,
|
| 24 |
-
hf_repo_id=environ.get("
|
| 25 |
hf_model_name="model_final_inf_only.pt",
|
| 26 |
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
|
| 27 |
categories={"1": dd.LayoutType.text,
|
|
@@ -29,6 +35,33 @@ dd.ModelCatalog.register("layout/model_final_inf_only.pt",dd.ModelProfile(
|
|
| 29 |
"3": dd.LayoutType.list,
|
| 30 |
"4": dd.LayoutType.table,
|
| 31 |
"5": dd.LayoutType.figure},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
))
|
| 33 |
|
| 34 |
# Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input
|
|
@@ -60,26 +93,30 @@ categories_item = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2ITEM).categories
|
|
| 60 |
assert categories_item is not None
|
| 61 |
d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE)
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
|
| 66 |
-
# text
|
| 67 |
-
|
| 68 |
|
| 69 |
|
| 70 |
-
def build_gradio_analyzer(
|
| 71 |
"""Building the Detectron2/DocTr analyzer based on the given config"""
|
| 72 |
|
| 73 |
cfg.freeze(freezed=False)
|
| 74 |
-
cfg.TAB =
|
| 75 |
-
cfg.TAB_REF =
|
| 76 |
-
cfg.OCR =
|
| 77 |
cfg.freeze()
|
| 78 |
|
| 79 |
pipe_component_list = []
|
| 80 |
layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True)
|
| 81 |
pipe_component_list.append(layout)
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
if cfg.TAB:
|
| 84 |
|
| 85 |
detect_result_generator = dd.DetectResultGenerator(categories_cell)
|
|
@@ -92,15 +129,12 @@ def build_gradio_analyzer(table, table_ref, ocr):
|
|
| 92 |
|
| 93 |
table_segmentation = dd.TableSegmentationService(
|
| 94 |
cfg.SEGMENTATION.ASSIGNMENT_RULE,
|
| 95 |
-
cfg.SEGMENTATION.
|
| 96 |
-
|
| 97 |
-
else cfg.SEGMENTATION.IOA_THRESHOLD_ROWS,
|
| 98 |
-
cfg.SEGMENTATION.IOU_THRESHOLD_COLS
|
| 99 |
-
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"]
|
| 100 |
-
else cfg.SEGMENTATION.IOA_THRESHOLD_COLS,
|
| 101 |
cfg.SEGMENTATION.FULL_TABLE_TILING,
|
| 102 |
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS,
|
| 103 |
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS,
|
|
|
|
| 104 |
)
|
| 105 |
pipe_component_list.append(table_segmentation)
|
| 106 |
|
|
@@ -109,69 +143,43 @@ def build_gradio_analyzer(table, table_ref, ocr):
|
|
| 109 |
pipe_component_list.append(table_segmentation_refinement)
|
| 110 |
|
| 111 |
if cfg.OCR:
|
| 112 |
-
d_layout_text = dd.ImageLayoutService(det, to_image=True, crop_image=True)
|
| 113 |
-
pipe_component_list.append(d_layout_text)
|
| 114 |
|
| 115 |
-
d_text = dd.TextExtractionService(
|
| 116 |
pipe_component_list.append(d_text)
|
| 117 |
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
| 119 |
parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES,
|
| 120 |
-
child_categories=
|
| 121 |
matching_rule=cfg.WORD_MATCHING.RULE,
|
| 122 |
-
threshold=cfg.WORD_MATCHING.
|
| 123 |
-
|
| 124 |
-
else cfg.WORD_MATCHING.IOA_THRESHOLD,
|
| 125 |
)
|
| 126 |
-
pipe_component_list.append(
|
|
|
|
| 127 |
order = dd.TextOrderService(
|
| 128 |
-
text_container=
|
| 129 |
-
floating_text_block_names=
|
| 130 |
-
text_block_names=
|
| 131 |
-
|
| 132 |
-
dd.LayoutType.text,
|
| 133 |
-
dd.LayoutType.list,
|
| 134 |
-
dd.LayoutType.cell,
|
| 135 |
-
dd.CellType.header,
|
| 136 |
-
dd.CellType.body,
|
| 137 |
-
],
|
| 138 |
)
|
| 139 |
pipe_component_list.append(order)
|
| 140 |
|
| 141 |
pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list)
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
def prepare_output(dp, add_table, add_ocr):
|
| 147 |
-
out = dp.as_dict()
|
| 148 |
-
out.pop("_image")
|
| 149 |
|
| 150 |
-
|
| 151 |
-
if add_ocr:
|
| 152 |
-
layout_items.sort(key=lambda x: x.reading_order)
|
| 153 |
-
layout_items_str = ""
|
| 154 |
-
for item in layout_items:
|
| 155 |
-
layout_items_str += f"\n {item.category_name}: {item.text}"
|
| 156 |
-
if add_table:
|
| 157 |
-
html_list = [table.html for table in dp.tables]
|
| 158 |
-
if html_list:
|
| 159 |
-
html = ("\n").join(html_list)
|
| 160 |
-
else:
|
| 161 |
-
html = None
|
| 162 |
-
else:
|
| 163 |
-
html = None
|
| 164 |
-
|
| 165 |
-
return dp.viz(show_table_structure=False), layout_items_str, html, out
|
| 166 |
|
| 167 |
|
| 168 |
-
def analyze_image(img, pdf,
|
| 169 |
|
| 170 |
# creating an image object and passing to the analyzer by using dataflows
|
| 171 |
-
|
| 172 |
-
add_ocr = _DETECTIONS[1] in attributes
|
| 173 |
-
|
| 174 |
-
analyzer = build_gradio_analyzer(add_table, add_table, add_ocr)
|
| 175 |
|
| 176 |
if img is not None:
|
| 177 |
image = dd.Image(file_name="input.png", location="")
|
|
@@ -180,20 +188,39 @@ def analyze_image(img, pdf, attributes):
|
|
| 180 |
df = DataFromList(lst=[image])
|
| 181 |
df = analyzer.analyze(dataset_dataflow=df)
|
| 182 |
elif pdf:
|
| 183 |
-
df = analyzer.analyze(path=pdf.name, max_datapoints=
|
| 184 |
else:
|
| 185 |
raise ValueError
|
| 186 |
|
| 187 |
df.reset_state()
|
| 188 |
-
df_iter = iter(df)
|
| 189 |
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
-
return
|
| 193 |
|
| 194 |
|
| 195 |
demo = gr.Blocks(css="scrollbar.css")
|
| 196 |
|
|
|
|
| 197 |
with demo:
|
| 198 |
with gr.Box():
|
| 199 |
gr.Markdown("<h1><center>deepdoctection - A Document AI Package</center></h1>")
|
|
@@ -201,8 +228,11 @@ with demo:
|
|
| 201 |
" and document layout analysis tasks using deep learning models. It does not implement models"
|
| 202 |
" but enables you to build pipelines using highly acknowledged libraries for object detection,"
|
| 203 |
" OCR and selected NLP tasks and provides an integrated frameworks for fine-tuning, evaluating"
|
| 204 |
-
" and running models
|
| 205 |
-
"
|
|
|
|
|
|
|
|
|
|
| 206 |
with gr.Box():
|
| 207 |
gr.Markdown("<h2><center>Upload a document and choose setting</center></h2>")
|
| 208 |
with gr.Row():
|
|
@@ -221,8 +251,9 @@ with demo:
|
|
| 221 |
gr.Examples(examples=[path.join(getcwd(), "sample_3.pdf")], inputs = inputs_pdf)
|
| 222 |
|
| 223 |
with gr.Row():
|
| 224 |
-
|
| 225 |
-
|
|
|
|
| 226 |
with gr.Row():
|
| 227 |
btn = gr.Button("Run model", variant="primary")
|
| 228 |
|
|
@@ -233,17 +264,23 @@ with demo:
|
|
| 233 |
with gr.Box():
|
| 234 |
gr.Markdown("<center><strong>Contiguous text</strong></center>")
|
| 235 |
image_text = gr.Textbox()
|
| 236 |
-
with gr.Box():
|
| 237 |
-
gr.Markdown("<center><strong>Table</strong></center>")
|
| 238 |
-
html = gr.HTML()
|
| 239 |
-
with gr.Box():
|
| 240 |
-
gr.Markdown("<center><strong>JSON</strong></center>")
|
| 241 |
-
json = gr.JSON()
|
| 242 |
with gr.Column():
|
| 243 |
with gr.Box():
|
| 244 |
gr.Markdown("<center><strong>Layout detection</strong></center>")
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
-
btn.click(fn=analyze_image, inputs=[inputs, inputs_pdf,
|
|
|
|
| 248 |
|
| 249 |
-
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
|
| 3 |
|
| 4 |
+
credentials_kwargs={"aws_access_key_id": os.environ["ACCESS_KEY"],"aws_secret_access_key": os.environ["SECRET_KEY"]}
|
| 5 |
+
|
| 6 |
# work around: https://discuss.huggingface.co/t/how-to-install-a-specific-version-of-gradio-in-spaces/13552
|
| 7 |
os.system("pip uninstall -y gradio")
|
| 8 |
os.system("pip install gradio==3.4.1")
|
| 9 |
+
os.system(os.environ["DD_ADDONS"])
|
| 10 |
|
| 11 |
from os import getcwd, path, environ
|
| 12 |
import deepdoctection as dd
|
| 13 |
from deepdoctection.dataflow.serialize import DataFromList
|
| 14 |
|
| 15 |
+
from dd_addons.extern import PdfTextDetector, PostProcessor, get_xsl_path
|
| 16 |
+
from dd_addons.pipe.conn import PostProcessorService
|
| 17 |
+
|
| 18 |
import gradio as gr
|
| 19 |
|
| 20 |
|
| 21 |
_DD_ONE = "conf_dd_one.yaml"
|
| 22 |
+
_XSL_PATH = get_xsl_path()
|
| 23 |
|
| 24 |
+
dd.ModelCatalog.register("xrf_layout/model_final_inf_only.pt",dd.ModelProfile(
|
| 25 |
+
name="xrf_layout/model_final_inf_only.pt",
|
| 26 |
+
description="layout_detection/morning-dragon-114",
|
| 27 |
+
config="xrf_dd/layout/CASCADE_RCNN_R_50_FPN_GN.yaml",
|
| 28 |
size=[274632215],
|
| 29 |
tp_model=False,
|
| 30 |
+
hf_repo_id=environ.get("HF_REPO_LAYOUT"),
|
| 31 |
hf_model_name="model_final_inf_only.pt",
|
| 32 |
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
|
| 33 |
categories={"1": dd.LayoutType.text,
|
|
|
|
| 35 |
"3": dd.LayoutType.list,
|
| 36 |
"4": dd.LayoutType.table,
|
| 37 |
"5": dd.LayoutType.figure},
|
| 38 |
+
model_wrapper="D2FrcnnDetector",
|
| 39 |
+
))
|
| 40 |
+
|
| 41 |
+
dd.ModelCatalog.register("xrf_cell/model_final_inf_only.pt", dd.ModelProfile(
|
| 42 |
+
name="xrf_cell/model_final_inf_only.pt",
|
| 43 |
+
description="cell_detection/restful-eon-6",
|
| 44 |
+
config="xrf_dd/cell/CASCADE_RCNN_R_50_FPN_GN.yaml",
|
| 45 |
+
size=[274583063],
|
| 46 |
+
tp_model=False,
|
| 47 |
+
hf_repo_id=environ.get("HF_REPO_CELL"),
|
| 48 |
+
hf_model_name="model_final_inf_only.pt",
|
| 49 |
+
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
|
| 50 |
+
categories={"1": dd.LayoutType.cell},
|
| 51 |
+
model_wrapper="D2FrcnnDetector",
|
| 52 |
+
))
|
| 53 |
+
|
| 54 |
+
dd.ModelCatalog.register("xrf_item/model_final_inf_only.pt", dd.ModelProfile(
|
| 55 |
+
name="xrf_item/model_final_inf_only.pt",
|
| 56 |
+
description="item_detection/firm_plasma_14",
|
| 57 |
+
config="xrf_dd/item/CASCADE_RCNN_R_50_FPN_GN.yaml",
|
| 58 |
+
size=[274595351],
|
| 59 |
+
tp_model=False,
|
| 60 |
+
hf_repo_id=environ.get("HF_REPO_ITEM"),
|
| 61 |
+
hf_model_name="model_final_inf_only.pt",
|
| 62 |
+
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
|
| 63 |
+
categories={"1": dd.LayoutType.row, "2": dd.LayoutType.column},
|
| 64 |
+
model_wrapper="D2FrcnnDetector",
|
| 65 |
))
|
| 66 |
|
| 67 |
# Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input
|
|
|
|
| 93 |
assert categories_item is not None
|
| 94 |
d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE)
|
| 95 |
|
| 96 |
+
# pdf miner
|
| 97 |
+
pdf_text = PdfTextDetector(_XSL_PATH)
|
| 98 |
|
| 99 |
+
# text detector
|
| 100 |
+
tex_text = dd.TextractOcrDetector(**credentials_kwargs)
|
| 101 |
|
| 102 |
|
| 103 |
+
def build_gradio_analyzer():
|
| 104 |
"""Building the Detectron2/DocTr analyzer based on the given config"""
|
| 105 |
|
| 106 |
cfg.freeze(freezed=False)
|
| 107 |
+
cfg.TAB = True
|
| 108 |
+
cfg.TAB_REF = True
|
| 109 |
+
cfg.OCR = True
|
| 110 |
cfg.freeze()
|
| 111 |
|
| 112 |
pipe_component_list = []
|
| 113 |
layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True)
|
| 114 |
pipe_component_list.append(layout)
|
| 115 |
|
| 116 |
+
nms_service = dd.AnnotationNmsService(nms_pairs=cfg.LAYOUT_NMS_PAIRS.COMBINATIONS,
|
| 117 |
+
thresholds=cfg.LAYOUT_NMS_PAIRS.THRESHOLDS)
|
| 118 |
+
pipe_component_list.append(nms_service)
|
| 119 |
+
|
| 120 |
if cfg.TAB:
|
| 121 |
|
| 122 |
detect_result_generator = dd.DetectResultGenerator(categories_cell)
|
|
|
|
| 129 |
|
| 130 |
table_segmentation = dd.TableSegmentationService(
|
| 131 |
cfg.SEGMENTATION.ASSIGNMENT_RULE,
|
| 132 |
+
cfg.SEGMENTATION.THRESHOLD_ROWS,
|
| 133 |
+
cfg.SEGMENTATION.THRESHOLD_COLS,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
cfg.SEGMENTATION.FULL_TABLE_TILING,
|
| 135 |
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS,
|
| 136 |
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS,
|
| 137 |
+
cfg.SEGMENTATION.STRETCH_RULE
|
| 138 |
)
|
| 139 |
pipe_component_list.append(table_segmentation)
|
| 140 |
|
|
|
|
| 143 |
pipe_component_list.append(table_segmentation_refinement)
|
| 144 |
|
| 145 |
if cfg.OCR:
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
d_text = dd.TextExtractionService(pdf_text)
|
| 148 |
pipe_component_list.append(d_text)
|
| 149 |
|
| 150 |
+
t_text = dd.TextExtractionService(tex_text,skip_if_text_extracted=True)
|
| 151 |
+
pipe_component_list.append(t_text)
|
| 152 |
+
|
| 153 |
+
match_words = dd.MatchingService(
|
| 154 |
parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES,
|
| 155 |
+
child_categories=cfg.WORD_MATCHING.CHILD_CATEGORIES,
|
| 156 |
matching_rule=cfg.WORD_MATCHING.RULE,
|
| 157 |
+
threshold=cfg.WORD_MATCHING.THRESHOLD,
|
| 158 |
+
max_parent_only=cfg.WORD_MATCHING.MAX_PARENT_ONLY
|
|
|
|
| 159 |
)
|
| 160 |
+
pipe_component_list.append(match_words)
|
| 161 |
+
|
| 162 |
order = dd.TextOrderService(
|
| 163 |
+
text_container=cfg.TEXT_ORDERING.TEXT_CONTAINER,
|
| 164 |
+
floating_text_block_names=cfg.TEXT_ORDERING.FLOATING_TEXT_BLOCK,
|
| 165 |
+
text_block_names=cfg.TEXT_ORDERING.TEXT_BLOCK,
|
| 166 |
+
text_containers_to_text_block=cfg.TEXT_ORDERING.TEXT_CONTAINER_TO_TEXT_BLOCK
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
)
|
| 168 |
pipe_component_list.append(order)
|
| 169 |
|
| 170 |
pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list)
|
| 171 |
|
| 172 |
+
post_processor = PostProcessor("deepdoctection", **credentials_kwargs)
|
| 173 |
+
post_service = PostProcessorService(post_processor)
|
| 174 |
+
pipe_component_list.append(post_service)
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
+
return pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
|
| 179 |
+
def analyze_image(img, pdf, max_datapoints):
|
| 180 |
|
| 181 |
# creating an image object and passing to the analyzer by using dataflows
|
| 182 |
+
analyzer = build_gradio_analyzer()
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
if img is not None:
|
| 185 |
image = dd.Image(file_name="input.png", location="")
|
|
|
|
| 188 |
df = DataFromList(lst=[image])
|
| 189 |
df = analyzer.analyze(dataset_dataflow=df)
|
| 190 |
elif pdf:
|
| 191 |
+
df = analyzer.analyze(path=pdf.name, max_datapoints=max_datapoints)
|
| 192 |
else:
|
| 193 |
raise ValueError
|
| 194 |
|
| 195 |
df.reset_state()
|
|
|
|
| 196 |
|
| 197 |
+
layout_items_str = ""
|
| 198 |
+
jsonl_out = []
|
| 199 |
+
dpts = []
|
| 200 |
+
html_list = []
|
| 201 |
+
|
| 202 |
+
for dp in df:
|
| 203 |
+
dpts.append(dp)
|
| 204 |
+
out = dp.as_dict()
|
| 205 |
+
jsonl_out.append(out)
|
| 206 |
+
out.pop("_image")
|
| 207 |
+
layout_items = dp.layouts
|
| 208 |
+
layout_items.sort(key=lambda x: x.reading_order)
|
| 209 |
+
layout_items_str += f"\n\n -------- PAGE NUMBER: {dp.page_number+1} ------------- \n"
|
| 210 |
+
for item in layout_items:
|
| 211 |
+
layout_items_str += f"\n {item.category_name}: {item.text}"
|
| 212 |
+
html_list.extend([table.html for table in dp.tables])
|
| 213 |
+
if html_list:
|
| 214 |
+
html = ("<br /><br /><br />").join(html_list)
|
| 215 |
+
else:
|
| 216 |
+
html = None
|
| 217 |
|
| 218 |
+
return [dp.viz(show_cells=False) for dp in dpts], layout_items_str, html, jsonl_out
|
| 219 |
|
| 220 |
|
| 221 |
demo = gr.Blocks(css="scrollbar.css")
|
| 222 |
|
| 223 |
+
|
| 224 |
with demo:
|
| 225 |
with gr.Box():
|
| 226 |
gr.Markdown("<h1><center>deepdoctection - A Document AI Package</center></h1>")
|
|
|
|
| 228 |
" and document layout analysis tasks using deep learning models. It does not implement models"
|
| 229 |
" but enables you to build pipelines using highly acknowledged libraries for object detection,"
|
| 230 |
" OCR and selected NLP tasks and provides an integrated frameworks for fine-tuning, evaluating"
|
| 231 |
+
" and running models.<br />"
|
| 232 |
+
"This pipeline consists of a stack of models powered by <strong>Detectron2"
|
| 233 |
+
"</strong> for layout analysis and table recognition. OCR will be provided as well. You can process"
|
| 234 |
+
"an image or even a PDF-document. Up to nine pages can be processed. <br />")
|
| 235 |
+
gr.Markdown("[https://github.com/deepdoctection/deepdoctection](https://github.com/deepdoctection/deepdoctection)")
|
| 236 |
with gr.Box():
|
| 237 |
gr.Markdown("<h2><center>Upload a document and choose setting</center></h2>")
|
| 238 |
with gr.Row():
|
|
|
|
| 251 |
gr.Examples(examples=[path.join(getcwd(), "sample_3.pdf")], inputs = inputs_pdf)
|
| 252 |
|
| 253 |
with gr.Row():
|
| 254 |
+
max_imgs = gr.Slider(1, 8, value=2, step=1, label="Number of pages in multi page PDF",
|
| 255 |
+
info="Will stop after 9 pages")
|
| 256 |
+
|
| 257 |
with gr.Row():
|
| 258 |
btn = gr.Button("Run model", variant="primary")
|
| 259 |
|
|
|
|
| 264 |
with gr.Box():
|
| 265 |
gr.Markdown("<center><strong>Contiguous text</strong></center>")
|
| 266 |
image_text = gr.Textbox()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
with gr.Column():
|
| 268 |
with gr.Box():
|
| 269 |
gr.Markdown("<center><strong>Layout detection</strong></center>")
|
| 270 |
+
gallery = gr.Gallery(
|
| 271 |
+
label="Output images", show_label=False, elem_id="gallery"
|
| 272 |
+
).style(grid=2)
|
| 273 |
+
with gr.Row():
|
| 274 |
+
with gr.Box():
|
| 275 |
+
gr.Markdown("<center><strong>Table</strong></center>")
|
| 276 |
+
html = gr.HTML()
|
| 277 |
+
|
| 278 |
+
with gr.Row():
|
| 279 |
+
with gr.Box():
|
| 280 |
+
gr.Markdown("<center><strong>JSON</strong></center>")
|
| 281 |
+
json = gr.JSON()
|
| 282 |
|
| 283 |
+
btn.click(fn=analyze_image, inputs=[inputs, inputs_pdf, max_imgs],
|
| 284 |
+
outputs=[gallery, image_text, html, json])
|
| 285 |
|
| 286 |
+
demo.launch()
|
conf_dd_one.yaml
CHANGED
|
@@ -1,26 +1,65 @@
|
|
| 1 |
CONFIG:
|
| 2 |
-
D2LAYOUT:
|
| 3 |
-
D2CELL:
|
| 4 |
-
D2ITEM:
|
| 5 |
WEIGHTS:
|
| 6 |
-
D2LAYOUT:
|
| 7 |
-
D2CELL:
|
| 8 |
-
D2ITEM:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
SEGMENTATION:
|
| 10 |
ASSIGNMENT_RULE: ioa
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
IOA_THRESHOLD_ROWS: 0.4
|
| 14 |
-
IOA_THRESHOLD_COLS: 0.4
|
| 15 |
FULL_TABLE_TILING: True
|
| 16 |
-
REMOVE_IOU_THRESHOLD_ROWS: 0.
|
| 17 |
-
REMOVE_IOU_THRESHOLD_COLS: 0.
|
|
|
|
|
|
|
| 18 |
WORD_MATCHING:
|
| 19 |
PARENTAL_CATEGORIES:
|
| 20 |
-
-
|
| 21 |
-
-
|
| 22 |
-
-
|
| 23 |
-
-
|
|
|
|
|
|
|
|
|
|
| 24 |
RULE: ioa
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
CONFIG:
|
| 2 |
+
D2LAYOUT: xrf_dd/layout/CASCADE_RCNN_R_50_FPN_GN.yaml
|
| 3 |
+
D2CELL: xrf_dd/cell/CASCADE_RCNN_R_50_FPN_GN.yaml
|
| 4 |
+
D2ITEM: xrf_dd/item/CASCADE_RCNN_R_50_FPN_GN.yaml
|
| 5 |
WEIGHTS:
|
| 6 |
+
D2LAYOUT: xrf_layout/model_final_inf_only.pt
|
| 7 |
+
D2CELL: xrf_cell/model_final_inf_only.pt
|
| 8 |
+
D2ITEM: xrf_item/model_final_inf_only.pt
|
| 9 |
+
LAYOUT_NMS_PAIRS:
|
| 10 |
+
COMBINATIONS:
|
| 11 |
+
- - text
|
| 12 |
+
- table
|
| 13 |
+
- - title
|
| 14 |
+
- table
|
| 15 |
+
- - text
|
| 16 |
+
- list
|
| 17 |
+
- - title
|
| 18 |
+
- list
|
| 19 |
+
- - text
|
| 20 |
+
- title
|
| 21 |
+
- - list
|
| 22 |
+
- table
|
| 23 |
+
THRESHOLDS:
|
| 24 |
+
- 0.005
|
| 25 |
+
- 0.005
|
| 26 |
+
- 0.542
|
| 27 |
+
- 0.1
|
| 28 |
+
- 0.699
|
| 29 |
+
- 0.01
|
| 30 |
SEGMENTATION:
|
| 31 |
ASSIGNMENT_RULE: ioa
|
| 32 |
+
THRESHOLD_ROWS: 0.9
|
| 33 |
+
THRESHOLD_COLS: 0.9
|
|
|
|
|
|
|
| 34 |
FULL_TABLE_TILING: True
|
| 35 |
+
REMOVE_IOU_THRESHOLD_ROWS: 0.5
|
| 36 |
+
REMOVE_IOU_THRESHOLD_COLS: 0.5
|
| 37 |
+
STRETCH_RULE: equal
|
| 38 |
+
USE_REFINEMENT: False
|
| 39 |
WORD_MATCHING:
|
| 40 |
PARENTAL_CATEGORIES:
|
| 41 |
+
- text
|
| 42 |
+
- title
|
| 43 |
+
- list
|
| 44 |
+
- figure
|
| 45 |
+
- cell
|
| 46 |
+
CHILD_CATEGORIES:
|
| 47 |
+
- word
|
| 48 |
RULE: ioa
|
| 49 |
+
THRESHOLD: 0.4
|
| 50 |
+
MAX_PARENT_ONLY: True
|
| 51 |
+
TEXT_ORDERING:
|
| 52 |
+
TEXT_CONTAINER: word
|
| 53 |
+
FLOATING_TEXT_BLOCK:
|
| 54 |
+
- title
|
| 55 |
+
- text
|
| 56 |
+
- list
|
| 57 |
+
- figure
|
| 58 |
+
TEXT_BLOCK:
|
| 59 |
+
- title
|
| 60 |
+
- text
|
| 61 |
+
- list
|
| 62 |
+
- cell
|
| 63 |
+
- figure
|
| 64 |
+
TEXT_CONTAINER_TO_TEXT_BLOCK: True
|
| 65 |
+
DEVICE: cpu
|