Spaces:
Runtime error
Runtime error
import time | |
import os | |
from os import getcwd, path | |
import importlib.metadata | |
from dotenv import load_dotenv | |
def check_additional_requirements(): | |
if importlib.util.find_spec("detectron2") is None: | |
os.system('pip install detectron2@git+https://github.com/facebookresearch/detectron2.git') | |
if importlib.util.find_spec("gradio") is not None: | |
if importlib.metadata.version("gradio")!="3.4.1": | |
os.system("pip uninstall -y gradio") | |
os.system("pip install gradio==3.4.1") | |
else: | |
os.system("pip install gradio==3.4.1") | |
os.system(os.environ["DD_ADDONS"]) | |
return | |
load_dotenv() | |
check_additional_requirements() | |
import deepdoctection as dd | |
from deepdoctection.dataflow.serialize import DataFromList | |
from deepdoctection.utils.settings import get_type | |
from dd_addons.analyzer.loader import get_loader | |
from dd_addons.extern.guidance import TOKEN_DEFAULT_INSTRUCTION | |
from dd_addons.utils.settings import register_llm_token_tag, register_string_categories_from_list | |
from dd_addons.extern.openai import OpenAiLmmTokenClassifier, is_api_key_valid | |
import gradio as gr | |
dd.Page.add_attribute_name("raw_json_output") | |
analyzer = get_loader(reset_config_file=True, config_overwrite=["OCR.USE_TESSERACT=False", | |
"OCR.USE_TEXTRACT=True", | |
"WORD_MATCHING.MAX_PARENT_ONLY=True"]) | |
demo = gr.Blocks(css="scrollbar.css") | |
def process_analyzer(openai_api_key, categories_str, instruction_str, img, pdf, max_datapoints): | |
if not is_api_key_valid(openai_api_key): | |
return [], {}, "You have entered no or an invalid api key. Please enter a valid api key" | |
categories_list = categories_str.split(",") | |
if not categories_str: | |
return [], {}, "You did not enter any entities. Please enter a at least one category." | |
register_string_categories_from_list(categories_list, "custom_token_classes") | |
custom_token_class = dd.object_types_registry.get("custom_token_classes") | |
print([token_class for token_class in custom_token_class]) | |
register_llm_token_tag([token_class for token_class in custom_token_class]) | |
categories = { | |
str(idx + 1): get_type(val) for idx, val in enumerate(categories_list) | |
} | |
gpt_token_classifier = OpenAiLmmTokenClassifier( | |
model_name="gpt-3.5-turbo", | |
categories=categories, | |
api_key=openai_api_key, | |
instruction= instruction_str if instruction_str else None, | |
) | |
analyzer.pipe_component_list[8].language_model = gpt_token_classifier | |
if img is not None: | |
image = dd.Image(file_name=str(time.time()).replace(".","") + ".png", location="") | |
image.image = img[:, :, ::-1] | |
df = DataFromList(lst=[image]) | |
df = analyzer.analyze(dataset_dataflow=df) | |
elif pdf: | |
df = analyzer.analyze(path=pdf.name, max_datapoints=max_datapoints) | |
else: | |
raise ValueError | |
df.reset_state() | |
json_out = {} | |
dpts = [] | |
json_out_raw = {} | |
for idx, dp in enumerate(df): | |
dpts.append(dp) | |
json_out[f"page_{idx}"] = dp.get_token() | |
json_out_raw[f"page_{idx}"] = dp.raw_json_output | |
return [dp.viz(show_cells=False, show_layouts=False, show_tables=False, show_words=True, show_token_class=True, ignore_default_token_class=True) | |
for dp in dpts], json_out, json_out_raw, "No error" | |
with demo: | |
with gr.Box(): | |
gr.Markdown("<h1><center>Document AI GPT</center></h1>") | |
gr.Markdown("<h2 ><center>Zero or few-shot Entity Extraction powered by ChatGPT and <strong>deep</strong>doctection </center></h2>" | |
"<center>This pipeline consists of a stack of models powered for layout analysis and table recognition " | |
"to prepare a prompt for ChatGPT. </center>" | |
"<center>Be aware! The Space is still very fragile.</center><br />") | |
with gr.Box(): | |
gr.Markdown("<h2><center>Upload a document and choose setting</center></h2>") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("Image upload"): | |
with gr.Column(): | |
inputs = gr.Image(type='numpy', label="Original Image") | |
with gr.Tab("PDF upload *"): | |
with gr.Column(): | |
inputs_pdf = gr.File(label="PDF") | |
gr.Markdown("<sup>* If an image is cached in tab, remove it first</sup>") | |
with gr.Box(): | |
gr.Examples( | |
examples=[path.join(getcwd(), "sample_2.png")], | |
inputs = inputs) | |
with gr.Box(): | |
gr.Markdown("Enter your OpenAI API Key* ") | |
user_token = gr.Textbox(value='', placeholder="OpenAI API Key", type="password", show_label=False) | |
gr.Markdown("<sup>* Your API key will not be saved. However, it is always recommended to deactivate the" | |
"API key once it is entered into an unknown source</sup>") | |
with gr.Column(): | |
with gr.Box(): | |
gr.Markdown( | |
"Enter a list of comma seperated entities. Use a snake case style. Avoid special characters. " | |
"Best way is to only use `a-z` and `_`") | |
categories = gr.Textbox(value='', placeholder="mitarbeiter_anzahl", show_label=False) | |
with gr.Box(): | |
gr.Markdown("Optional: Enter a prompt for additional guidance. Will use the placeholder as fallback") | |
instruction = gr.Textbox(value='', placeholder=TOKEN_DEFAULT_INSTRUCTION, show_label=False) | |
with gr.Row(): | |
max_imgs = gr.Slider(1, 3, value=1, step=1, label="Number of pages in multi page PDF", | |
info="Will stop after 3 pages") | |
with gr.Row(): | |
btn = gr.Button("Run model", variant="primary") | |
with gr.Box(): | |
gr.Markdown("<h2><center>Outputs</center></h2>") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Box(): | |
gr.Markdown("<center><strong>Message</strong></center>") | |
msg = gr.Textbox(value='', placeholder="message", show_label=False) | |
with gr.Column(): | |
with gr.Box(): | |
gr.Markdown("<center><strong>JSON</strong></center>") | |
json = gr.JSON() | |
with gr.Box(): | |
gr.Markdown("<center><strong>ChatGPT output. </strong> <br />" | |
"It is possible that ChatGPT answers in an unexpected way, " | |
"such that the answer cannot be properly processed. In this case you might get" | |
"an empty JSON but you can still see the raw output.</center>") | |
json_raw = gr.JSON() | |
with gr.Column(): | |
with gr.Box(): | |
gr.Markdown("<center><strong>Layout detection</strong></center>") | |
gallery = gr.Gallery( | |
label="Output images", show_label=False, elem_id="gallery" | |
).style(grid=2) | |
btn.click(fn=process_analyzer, inputs=[user_token, categories, instruction, inputs, inputs_pdf, max_imgs], | |
outputs=[gallery, json, json_raw, msg]) | |
demo.launch() | |